Как решать трапецию. Произвольная трапеция. Площадь произвольной трапеции

Всем выпускникам, которые готовятся к сдаче ЕГЭ по математике, будет полезно освежить в памяти тему «Произвольная трапеция». Как показывает многолетняя практика, планиметрические задачи из этого раздела вызывают у многих старшеклассников определенные сложности. При этом решить задачи ЕГЭ на тему «Произвольная трапеция» требуется при прохождении и базового, и профильного уровня аттестационного испытания. Следовательно, уметь справляться с подобными упражнениями должны все выпускники.

Как подготовиться к экзамену?

Большинство планиметрических задач решаются путем классических построений. Если в задаче ЕГЭ требуется найти, к примеру, площадь трапеции, изображенной на рисунке, стоит отметить на чертеже все известные параметры. После этого вспомните основные теоремы, относящиеся к ним. Применив их, вы сможете найти правильный ответ.

Чтобы подготовка к экзамену была действительно эффективной, обратитесь к образовательному порталу «Школково». Здесь вы найдете весь базовый материал по темам «Произвольная трапеция или который поможет вам успешно сдать ЕГЭ. Основные свойства фигуры, формулы и теоремы собраны в разделе «Теоретическая справка».

«Прокачать» навыки решения задач выпускники смогут также на нашем математическом портале. В разделе «Каталог» представлена большая подборка соответствующих упражнений разного уровня сложности. Перечень заданий наши специалисты регулярно обновляют и дополняют.

Последовательно выполнять упражнения учащиеся из Москвы и других городов могут в режиме онлайн. При необходимости любое задание можно сохранить в разделе «Избранное» и в дальнейшем вернуться к нему, чтобы обсудить с преподавателем.

Задачи с трапецией не кажутся сложными в ряде фигур, которые изучены ранее. Как частный случай рассматривается прямоугольная трапеция. А при поиске ее площади иногда бывает удобнее разбить ее на две уже знакомые: прямоугольник и треугольник. Стоит только немного подумать, и решение обязательно найдется.

Определение прямоугольной трапеции и ее свойства

У произвольной трапеции основания параллельны, а боковые стороны могут иметь произвольное значение углов к ним. Если рассматривается прямоугольная трапеция, то в ней одна из сторон всегда перпендикулярна основаниям. То есть два угла в ней будут равны 90 градусам. Причем они всегда принадлежат смежным вершинам или, другими словами, одной боковой стороне.


Другие углы в прямоугольной трапеции − это всегда острый и тупой. Причем их сумма всегда будет равна 180 градусам.

Каждая диагональ образует с ее меньшей боковой стороной прямоугольный треугольник. А высота, которая проведена из вершины с тупым углом, делит фигуру на две. Одна из них прямоугольник, а другая − прямоугольный треугольник. Кстати, эта сторона всегда равна высоте трапеции.

Какие обозначения приняты в представленных формулах?

Все величины, используемые в разных выражениях, которые описывают трапецию, удобно сразу оговорить и представить в таблице:

Формулы, которые описывают элементы прямоугольной трапеции

Самая простая из них связывает высоту и меньшую боковую сторону:

Еще несколько формул для этой стороны прямоугольной трапеции:

с = d *sinα;

c = (a - b) * tg α;

c = √ (d 2 - (a - b) 2).

Первая вытекает из прямоугольного треугольника. И говорит о том, что катет к гипотенузе дает синус противолежащего угла.

В том же треугольнике второй катет равен разности двух оснований. Поэтому справедливо утверждение, которое приравнивает тангенс угла к отношению катетов.

Из того же треугольника можно вывести формулу, основываясь на знании теоремы Пифагора. Это третье записанное выражение.


Можно записать формулы для другой боковой стороны. Их тоже три:

d = (a - b) /cosα;

d = c / sin α;

d = √ (c 2 + (а - b) 2).

Первые две опять получаются из соотношения сторон в том же прямоугольном треугольнике, а вторая выводится из теоремы Пифагора.

Какой формулой можно воспользоваться для расчета площади?

Той, что дана для произвольной трапеции. Только нужно учесть, что высотой является сторона, перпендикулярная к основаниям.

S = (a + b) * h / 2.

Эти величины не всегда даны явно. Поэтому чтобы вычислить площадь прямоугольной трапеции, потребуется выполнить некоторые математические выкладки.

Как быть, если нужно вычислить диагонали?

В этом случае нужно увидеть, что они образуют два прямоугольных треугольника. Значит, всегда можно воспользоваться теоремой Пифагора. Тогда первая диагональ будет выражаться так:

d1 = √ (с 2 + b 2)

или по-другому, заменив «с» на «h»:

d1 = √ (h 2 + b 2).

Аналогичным образом получаются формулы для второй диагонали:

d2 = √ (с 2 + b 2) или d 2 = √ (h 2 + а 2).

Задача №1

Условие . Площадь прямоугольной трапеции известна и равна 120 дм 2 . Ее высота имеет длину 8 дм. Необходимо вычислить все стороны трапеции. Дополнительным условием является то, что одно основание меньше другого на 6 дм.

Решение. Поскольку дана прямоугольная трапеция, в которой известна высота, то сразу же можно сказать о том, что одна из сторон равна 8 дм, то есть меньшая боковая сторона.

Теперь можно сосчитать другую: d = √ (с 2 + (а - b) 2). Причем здесь сразу даны и сторона с, и разность оснований. Последнее равно 6 дм, это известно из условия. Тогда d будет равняться квадратному корню из (64 + 36), то есть из 100. Так найдена еще одна боковая сторона, равная 10 дм.

Сумму оснований можно найти из формулы для площади. Она будет равна удвоенному значению площади, разделенному на высоту. Если считать, то получается 240 / 8. Значит, сумма оснований — это 30 дм. С другой стороны, их разность равна 6 дм. Объединив эти уравнения, можно сосчитать оба основания:

а + b = 30 и а - b = 6.

Можно выразить а как (b + 6), подставить его в первое равенство. Тогда получится, что 2b будет равняться 24. Поэтому просто b окажется 12 дм.

Тогда последняя сторона а равна 18 дм.

Ответ. Стороны прямоугольной трапеции: а = 18 дм, b = 12 дм, с = 8 дм, d = 10 дм.

Задача №2

Условие. Дана прямоугольная трапеция. Ее большая боковая сторона равняется сумме оснований. Ее высота имеет длину 12 см. Построен прямоугольник, стороны которого равны основаниям трапеции. Необходимо вычислить площадь этого прямоугольника.

Решение. Начать нужно с искомого. Нужная площадь определится как произведение a и b. Обе эти величины не известны.

Потребуется использовать дополнительные равенства. Одно из них построено на утверждении из условия: d = а + b. Необходимо воспользоваться третьей формулой для этой стороны, которая дана выше. Получится: d 2 = с 2 + (a - b) 2 или (a + b) 2 = с 2 + (a - b) 2 .

Необходимо сделать преобразования, подставив вместо с его значение из условия - 12. После раскрытия скобок и приведения подобных слагаемых получается, что 144 = 4 ab.

В начале решения шла речь о том, что а*b дает искомую площадь. Поэтому в последнем выражении можно заменить это произведение на S. Простой расчет даст значение площади. S = 36 см 2 .

Ответ. Искомая площадь 36 см 2 .

Задача №3

Условие. Площадь прямоугольной трапеции 150√3 см². Острый угол равняется 60 градусам. Такое же значение имеет угол между маленьким основанием и меньшей диагональю. Нужно вычислить меньшую диагональ.

Решение. Из свойства углов трапеции получается, что ее тупой угол равен 120º. Тогда диагональ делит его на равные, потому что одна его часть уже 60 градусов. Тогда и угол между этой диагональю и вторым основанием тоже 60 градусов. То есть треугольник, образованный большим основанием, наклонной боковой стороной и меньшей диагональю, является равносторонним. Таким образом, искомая диагональ будет равна а, как и боковая сторона d = а.

Теперь нужно рассмотреть прямоугольный треугольник. В нем третий угол равен 30 градусам. Значит катет, лежащий против него, равен половине гипотенузы. То есть меньшее основание трапеции равно половине искомой диагонали: b = a/2. Из него же нужно найти высоту, равную боковой стороне, перпендикулярной основаниям. Сторона с здесь катет. Из теоремы Пифагора:

с = (a/2) * √3.

Теперь осталось только подставить все величины в формулу площади:

150√3 = (a + a/2) * (a/2 * √3) / 2.

Решение этого уравнения дает корень 20

Ответ. Меньшая диагональ имеет длину 20 см.

Добрый день, дорогие друзья! Сегодня у нас тема — трапеция решение задач по геометрии. Прежде чем начинать разбирать задачи, давайте вспомним, что такое трапеция, и какие у неё есть элементы.
Трапеция — выпуклый четырёхугольник, у которого две стороны параллельны, а две другие — не параллельны.
Параллельные стороны называют основаниями, а непараллельные — боковыми сторонами.
Трапеции бывают прямоугольные, равнобедренные и простые.
В прямоугольных трапециях есть 2 прямых угла.
В равнобедренных трапециях, как в равнобедренных треугольниках, углы при основаниях равны, равны так же и боковые стороны.
В трапеции имеется средняя линия, которая соединяет середины боковых сторон.
А теперь задачи.

Острый угол равнобедренной трапеции равен 60°. Доказать, что основание ВС = AD — AB.
Доказательство. Опустим из вершин трапеции высоты BM и CN на нижнее основание AD.
Получим два прямоугольных треугольника ABM и DCN, а также прямоугольник BCNM.
Поскольку в прямоугольных треугольниках один угол равен 60°, то второй, согласно следствию из теоремы о сумме внутренних углов треугольника, равен 30°.
А мы знаем, что катет, лежащий против угла в 30°, равен половине гипотенузы. Т.е. АМ= с/2.
То же самое и в правом треугольнике — ND = с/2.
Получается, что нижнее основание можно представить в виде суммы трёх отрезков, а именно AM, MN, ND, где AM=ND=c/2.
MN=BC, или верхнему основанию.
Отсюда можно написать MN=BC=AD — AM — ND = AD — c/2 — c/2 = AD — AB.
Мы доказали, что верхнее основание равно разности нижнего основания и боковой стороны.

Основания трапеции равны AD и BC. Найти длину отрезка KP, который соединяет середины диагоналей трапеции.
Решение: На основании теоремы Фалеса отрезок KP принадлежит большему отрезку MN, который является средней линией трапеции.
Средняя линия трапеции , как мы знаем, равна полу-сумме оснований трапеции , или (AD+BC)/2.
В то же время, рассматривая треугольник ACD и его среднюю линию KN, можно понять, что KN=AD/2.
Рассматривая другой треугольник BCD и его среднюю линию PN, можно увидеть, что PN=BC/2.
Отсюда, KP=KN-PN = AD/2 — BC/2 = (AD-BC)/2.

Мы доказали, что отрезок, который соединяет середины диагоналей трапеции, равен полу-разности оснований данной трапеции .

Задача 3. Найти меньшее основание ВС равнобедренной трапеции, если высота СK, проведённая из конца C меньшего основания, делит большее основание на отрезки AK и KD, разность которых равна 8 см.
Решение: Сделаем дополнительное построение. Проведём высоту ВМ.
Рассмотрим треугольники ABM и DCK. Они равны по гипотенузе и катету — AB=CD, как боковые стороны равнобедренной трапеции.
Высоты трапеции BM и CK тоже равны, как перпендикуляры, расположенные между двумя параллельными прямыми .
Следовательно, AM=KD. Получается, что разность между AK и KD равна разности между AK и AM.
А это есть отрезок MK. Но MK равен ВС, поскольку BCKM — прямоугольник.
Отсюда меньшее основание трапеции равно 8 см.

Задача 4. Найти отношение оснований трапеции, если её средняя линия делится диагоналями на 3 равные части.
Решение: Поскольку MN — средняя линия трапеции, то она параллельна основаниям и делит боковые стороны пополам .
По теореме Фалеса MN делит также и стороны AC и BD пополам.

Рассматривая треугольник АВС можно видеть, что MO в нём — средняя линия. А средняя линия треугольника параллельна основанию и равна его половине . Т.е. если MO=Х, то ВС=2Х.
Из треугольника ACD имеем ON — средняя линия.
Она тоже параллельна основанию и равна его половине.
Но, поскольку OP+PN= Х+Х=2Х, тогда AD=4Х.

Получается, что верхнее основание трапеции равно 2Х, а нижнее — 4Х.
Ответ: отношение оснований трапеции равно 1:2.

Трапеция – четырехугольник у которого две стороны параллельны. Параллельные стороны – это основание, непараллельные стороны – боковые.

Существует несколько основных видов: криволинейная, равнобедренная, произвольная, прямоугольная. Вычисления площади трапеции по формуле разнятся в зависимости от конкретного типа геометрической фигуры.

Что такое трапеция: типы и отличия

Всего существует четыре типа, отличающихся между собой не только вариативностью углов, но и возможным наличием криволинейных отрезков.


Площадь произвольной трапеции

Вариативность расчета площади произвольной трапеции невелика. Ее можно вычислить относительно заданных размеров основания и высоты; посчитать через обозначенные четыре стороны фигуры; решить пример, зная длину средней линии и высоты; по указанным диагоналям и углом между ними; высчитать через основания и два угла.

Основная формула расчета данного способа:


Где а и b – параллельные стороны, а h – высота четырехугольника.

Пример задачи: Дана плоская геометрическая фигура, параллельные стороны которой соответствуют длине 12 и 20 см, а высота равна – 10 см. Как найти площадь?

Решение: Допустимое решение согласно вышеприведенной формуле S = (a + b)/2 x h: S = (12 + 20)/2 x 10 = 160 см².

Зная длину средней линии и высоту плоской фигуры, всегда можно найти площадь трапеции, выполнив буквально одно действие:


Где h – высота четырехугольника, а m – средняя линия (прямая, соединяющая середины боковых сторон).

Пример решения задачи: Дана трапеция, в которой длина средней линии – 28 см, а высота фигуры – 19 см. Какова площадь плоского четырехугольника?

Решение: Используя формулу S = hm, подставляем вместо букв цифровые значения из условия задачки. Получаем S = 28 х 19 = 532 см².

Этот метод не так прост, как предыдущие. Здесь взяты за основу основные теоремы геометрии, а потому принцип расчета площади трапеции выглядит следующим образом:


Где a, b, c, d – четыре стороны фигуры, причем сторона b в обязательном порядке должна быть длинней а.

Пример вычисления: Даны стороны – a = 2 см, b = 4 см, c = 8 см, d = 7 см. Как найти площадь трапеции?

Расчет:

Вычислить площадь трапеции также можно, зная размеры обеих диагоналей и значения угла между ними.


Обозначения: d₁ и d₂ — первая и вторая диагонали, α – угол между диагоналями.

Пример: Вычислить площадь фигуры при следующих известных значениях — d₁ = 17 см, d₂ = 25 см, α = 35⁰.

Верное решение: S = ½ х 17 х 25 х sin35 = 212,5 х 0,57 = 121,125 см².

Еще один вариант вычисления, основанный на расчете площади трапеции посредством длин двух оснований и двух углов.


Значения букв: b, a – длины оснований, α и β – углы.

Решение:

Обучающее видео

Отличным подспорьем в изучении основных типов вычислений площади являются видеоматериалы с доступным, легким языком изложения, подробными объяснениями и примерами решения задач.

Видео «Трапеция: решение задач»

Видео для новичков – доходчиво изложенная информация, содержащая основные формулы вычисления площади трапеции.

Видео «Площадь трапеции»

Видео содержит максимально полную информацию о видах трапеций, правильных буквенных обозначениях и вариантах решений разноплановых задач при помощи всех известных методов и принципов расчета.

Все перечисленные формулы и способы вычисления широко применимы во время изучения геометрии в школах и ВУЗах. Студенту, школьнику и абитуриенту предоставленная информация пригодится в качестве онлайн шпаргалки в период интенсивной подготовки к экзаменам, контрольным работам, написания рефератов, курсовых и подобных работ.

В этой статье для вас сделана очередная подборка задач с трапецией. Условия так или иначе связаны с её средней линией. Типы заданий взяты из открытого банка типовых задач. Если есть желание, то можете освежить свои теоретические знания . На блоге уже рассмотрены задачи условия которых связаны с , а также . Кратко о средней линии:


Средняя линия трапеции соединяет середины боковых сторон. Она параллельна основаниям и равна их полусумме.

Перед решением задач давайте рассмотрим теоретический пример.

Дана трапеция ABCD. Диагональ АС пересекаясь со средней линией образует точку К, диагональ BD точку L. Доказать, что отрезок KL равен половине разности оснований.


Давайте сначала отметим тот факт, что средняя линия трапеции делит пополам любой отрезок концы которого лежат на её основаниях. Этот вывод напрашивается сам собой. Представьте отрезок соединяющий две точки оснований, он разобьёт данную трапецию на две других. Получится, что отрезок параллельный основаниям трапеции и проходящий через середину боковой стороны на другой боковой стороне пройдёт через её середину.

Так же это основывается на теореме Фалеса:

Если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные отрезки.

То есть в данном случае К середина АС и L середина BD. Следовательно EK есть средняя линия треугольника АВС, LF есть средняя линия треугольника DCB. По свойству средней линии треугольника:

Можем теперь выразить отрезок KL через основания:

Доказано!

Данный пример приведён не просто так. В задачах для самостоятельного решения имеется именно такая задача. Только в ней не сказано, что отрезок соединяющий середины диагоналей лежит на средней линии. Рассмотрим задачи:

27819. Найдите среднюю линию трапеции, если ее основания равны 30 и 16.


Вычисляем по формуле:

27820. Средняя линия трапеции равна 28, а меньшее основание равно 18. Найдите большее основание трапеции.


Выразим большее основание:

Таким образом:

27836. Перпендикуляр, опущенный из вершины тупого угла на большее основание равнобедренной трапеции, делит его на части, имеющие длины 10 и 4. Найдите среднюю линию этой трапеции.


Для того, чтобы найти среднюю линию необходимо знать основания. Основание АВ найти просто: 10+4=14. Найдём DC.

Построим второй перпендикуляр DF:


Отрезки AF, FE и EB будут равны соответственно 4, 6 и 4. Почему?

В равнобедренной трапеции перпендикуляры опущенные к большему основанию разбивают его на три отрезка. Два из них, являющиеся катетами отсекаемых прямоугольных треугольников, равны друг другу. Третий отрезок равен меньшему основанию, так как при построении указанных высот образуется прямоугольник, а в прямоугольнике противолежащие стороны равны. В данной задаче:

Таким образом DC=6. Вычисляем:

27839. Основания трапеции относятся 2:3, а средняя линия равна 5. Найдите меньшее основание.


Введём коэффициент пропорциональности х. Тогда АВ=3х, DC=2х. Можем записать:

Следовательно меньшее основание равно 2∙2=4.

27840. Периметр равнобедренной трапеции равен 80, ее средняя линия равна боковой стороне. Найдите боковую сторону трапеции.

Исходя из условия можем записать:

Если обозначить среднюю линию через величину х, то получится:

Второе уравнение уже можно записать в виде:

27841. Средняя линия трапеции равна 7, а одно из ее оснований больше другого на 4. Найдите большее основание трапеции.


Обозначим меньшее основание (DC) как х, тогда большее (AB) будет равно х+4. Можем записать

Получили, что меньшее основание рано пяти, значит большее равно 9.

27842. Средняя линия трапеции равна 12. Одна из диагоналей делит ее на два отрезка, разность которых равна 2. Найдите большее основание трапеции.


Большее основание трапеции мы без труда найдём если вычислим отрезок ЕО. Он является средней линией в треугольнике ADB, и АВ=2∙ЕО.

Что имеем? Сказано что средняя линия равна 12 и разность отрезков ЕО и ОF равна 2. Можем записать два уравнения и решить систему:

Понятно, что в данном случае подобрать пару чисел можно без вычислений, это 5 и 7. Но, всё-таки, решим систему:


Значит ЕО=12–5=7. Таким образом, большее основание равно АВ=2∙ЕО=14.

27844. В равнобедренной трапеции диагонали перпендикулярны. Высота трапеции равна 12. Найдите ее среднюю линию.

Сразу отметим, что высота проведённая через точку пересечения диагоналей в равнобедренной трапеции лежит на оси симметрии и разбивает трапецию на две равные прямоугольные трапеции, то есть основания этой высотой делятся пополам.

Казалось бы, для вычисления средней линии мы должны найти основания. Тут небольшой тупик возникает… Как зная высоту, в данном случае, вычислить основания? А ни как! Таких трапеций с фиксированной высотой и диагоналями пересекающимися по углом 90 градусов можно построить множество. Как быть?

Посмотрите на формулу средней линии трапеции. Ведь нам необязательно знать сами основания, достаточно узнать их сумму (или полусумму). Это мы сделать можем.

Так как диагонали пересекаются под прямым углом, то высотой EF образуются равнобедренные прямоугольные треугольники:

Из выше сказанного следует, что FO=DF=FC, а OE=AE=EB. Теперь запишем чему равна высота выраженная через отрезки DF и AE:


Таким образом, средняя линия равна 12.

*Вообще это задачка, как вы поняли, для устного счёта. Но, уверен, представленное подробное объяснение необходимо. А так… Если взглянуть на рисунок (при условии, что при построении соблюдён угол между диагоналями), сразу в глаза бросается равенство FO=DF=FC, а OE=AE=EB.

В составе прототипов имеется ещё типы заданий с трапециями. Построена она на листе в клетку и требуется найти среднюю линию, сторона клетки обычно равна 1, но может быть другая величина.

27848. Найдите среднюю линию трапеции ABCD , если стороны квадратных клеток равны 1.

Всё просто, вычисляем основания по клеткам и используем формулу: (2+4)/2=3

Если же основания построены под углом к клеточной сетке, то есть два способа. Например!

Поделитесь с друзьями или сохраните для себя:

Загрузка...