Сверхкритические жидкости в химии. Фазовые переходы. Критическая точка Критическая точка воды

Кривая фазового равновесия (в плоскости Р, Т) может в некоторой точке окончиться (рис. 16); такая точка называется критической, а соответствующие ей температура и давление - критической температурой и критическим давлением. При температурах выше и при давлениях, больших не существует различных фаз, и тело всегда однородно.

Можно сказать, что в критической точке исчезает различие между обеими фазами. Понятие о критической точке было впервые введено Д. И. Менделеевым (1860).

В координатах Т, V диаграмма равновесия при наличии критической точки выглядит так, как это изображено на рис. 17. По мере приближения температуры к ее критическому значению удельные объемы находящихся друг с другом в равновесии фаз сближаются и в критической точке (К на рис. 17) совпадают. Аналогичный вид имеет диаграмма в координатах Р, V.

При наличии критической точки между всякими двумя состояниями вещества может быть произведен непрерывный переход, при котором ни в какой момент не происходит расслоения на две фазы - для этого надо менять состояние вдоль какой-либо кривой, огибающей критическую точку и нигде не пересекающей кривую равновесия. В этом смысле при наличии критической точки становится условным самое понятие о различных фазах, и невозможно во всех случаях указать, какие состояния являются одной фазой, а какие - другой. Строго говоря, можно говорить о двух фазах лишь тогда, когда они существуют обе одновременно, соприкасаясь друг с другом, т. е. в точках, лежащих на кривой равновесия.

Ясно, что критическая точка может существовать лишь для таких фаз, различие между которыми имеет лишь чисто количественный характер. Таковы жидкость и газ, отличающиеся друг от друга лишь большей или меньшей ролью взаимодействия между молекулами.

Такие же фазы, как жидкость и твердое тело (кристалл) или различные кристаллические модификации вещества, качественно различны между собой, так как отличаются своей внутренней симметрией. Ясно, что о всяком свойстве (элементе) симметрии можно сказать только либо, что оно есть, либо, что его нет; оно может появиться или исчезнуть лишь сразу, скачком, а не постепенно. В каждом состоянии тело будет обладать либо одной, либо другой симметрией, и потому всегда можно указать, к которой из двух фаз оно относится. Критическая точка, следовательно, для таких фаз не может существовать, и кривая равновесия должна либо уходить на бесконечность, либо заканчиваться, пересекаясь с кривыми равновесия других фаз.

Обычная точка фазового перехода не представляет собой в математическом отношении особенности для термодинамических величин вещества. Действительно, каждая из фаз может существовать (хотя бы как метастабильная) и по другую сторону от точки перехода; термодинамические неравенства в этой точке не нарушаются. В точке перехода химические потенциалы обеих фаз равны друг другу: ; для каждой же из функций эта точка ничем не замечательна.

Изобразим в плоскости Р, V какую-либо изотерму жидкости и газа, т. е. кривую зависимости Р от V при изотермическом расширении однородного тела на рис. 18). Согласно термодинамическому неравенству есть убывающая функция V. Такой наклон изотерм должен сохраниться и на некотором протяжении за точками их пересечения с кривой равновесия жидкости и газа (точки b и участки изотерм соответствуют метастабильным перегретой жидкости и переохлажденному пару, в которых термодинамические неравенства по-прежнему соблюдаются (полностью же равновесному изотермическому изменению состояния между точками b не отвечает, конечно, горизонтальный отрезок на котором происходит расслоение на две фазы).

Если учесть, что точки имеют одинаковую ординату Р, то ясно, что обе части изотермы не могут перейти друг в друга непрерывным образом, и между ними должен быть разрыв. Изотермы заканчиваются в точках (с и d), в которых нарушается термодинамическое неравенство, т. е.

Построив геометрическое место точек окончания изотерм жидкости и газа, мы получим кривую АКБ, на которой нарушаются (для однородного тела) термодинамические неравенства; она ограничивает область, в которой тело ни при каких условиях не может существовать как однородное. Области между этой кривой и кривой равновесия фаз отвечают перегретой жидкости и переохлажденному пару. Очевидно, что в критической точке обе кривые должны касаться друг друга. Из точек же, лежащих на самой кривой АКБ, реально существующим состояниям однородного тела отвечает лишь критическая точка К - единственная, в которой эта кривая соприкасается с областью устойчивых однородных состояний.

В противоположность обычным точкам фазового равновесия критическая точка является в математическом отношении особой точкой для термодинамических функций вещества (то же самое относится ко всей кривой АКВ, ограничивающей область существования однородных состояний тела). Характер этой особенности и поведение вещества вблизи критической точки будут рассмотрены в § 153.

Экспериментальные и теоретические изотермы

Впервые экспериментальные изотермы для реальных газов (углекислый газ ) были изучены Эндрюсом, они были получены медленным изотермическим сжатием ненасыщенного пара, находящегося в цилиндре под поршнем (изотермы приведены на рис. 2.19,а).

Как видно из изотерм, приведенных на рис. 2.19,а, все они содержат горизонтальный участок, который с повышением температуры уменьшается и при достижении критической температуры () полностью исчезает. Критической температуре соответствует критическая изотерма 4, на ней в критической точке имеется точка перегиба.

Если провести через крайние точки горизонтальных участков изотерм линию (она будет колоколообразной), то тогда вся область диаграммы в координатах (,) будет разделена на три области (рис. 2.19,б) - область жидких состояний, область газообразных состояний и область двухфазных состояний (в ней одновременно существуют газообразное и жидкое состояния вещества). Отметим, что на рис. 2.19,б не отражено твердое состояние вещества.

Область газообразных состояний, которая располагается выше критической изотермы, называют газом. Изотермы в этой области напоминают изотермы идеального газа (рис. 2.19,а, изотерма 5). В этой области температур вещество существует только в газообразном состоянии при любых давлениях и объемах, т.е. проводя изотермическое сжатие газа, нельзя его при таких температурах превратить в жидкость. Это объясняет тот факт, что гелий и водород длительное время с помощью процесса изотермического сжатия не удавалось перевести в жидкое состояние (для гелия и водорода критические температуры составляли и соответственно). Если взять газ, находящийся ниже критической изотермы, то при изотермическом сжатии его можно превратить в жидкость. Поэтому, отмечая этот факт, в этой области газ называют ненасыщенным паром.

Рассмотрим подробнее изотерму под номером 2 на рис. 2.19,а. Ее можно разделить на три участка.

Участок - . При сжатии ненасыщенного пара он переходит в насыщенное состояние в точке .

Участок - . Происходит конденсация насыщенного пара, при неизменном давлении, равном давлению насыщенного пара при данной температуре. В этой области объемов две фазы вещества – жидкая и парообразная – находятся в равновесии. При достижении точки весь пар превращается в жидкость.

Участок - . Здесь наблюдается жидкое состояние вещества. Изменение объема жидкости при увеличении ее давления будет незначительным. Поэтому изотермы в этой области практически вертикальны.

Рассмотрим подробнее, что происходит в критической точке (параметры, соответствующие ей, обозначаются как , и ).



В критической точке наблюдается критическое состояние вещества , для него исчезает различие между жидкостью и насыщенным паром. Это проявляется в том, что при нагреве в закрытом сосуде какой-то жидкости при достижении критической температуры исчезнет граница раздела между жидкостью и паром - они образуют единое однородное вещество (плотности пара и жидкости совпадут, силы поверхностного натяжения исчезнут, теплота парообразования будет равна нулю).

3. Сравнение теоретических и экспериментальных изотерм . Рассмотрим вид расчетных изотерм, которые можно получить из уравнения (2.86). Для этого перепишем это уравнение в следующем виде:

. (2.88)

Известно, что такое кубическое уравнение имеет либо один, либо три вещественных корня. На рис. 2.19,в приведен график одной из расчетных изотерм - для нее в области давлений () решение уравнения (2.88) дает три вещественных корня (горизонтальная линия пересекает изотерму в трех точках, соответствующих значениям объема , и ). Это приводит к зигзагообразному (волнообразному) поведению изотермы в области одновременного существования насыщенного пара и жидкости.

Такое поведение изотермы в этой области не согласуется с экспериментом. В других же областях, где существует только жидкость или только пар, наблюдается достаточно удовлетворительное согласие между экспериментом и теорией.

Отметим, что волнообразные участки расчетных изотерм частично подтверждаются экспериментом. Если создать условия, при которых в газе будут отсутствовать центры конденсации (например, пылинки или ионы), то медленным изотермическим сжатием (переход 1-2-3) можно получить так называемый пересыщенный пар , ему соответствуют на изотерме состояния, заключенные между точками 2 и 3 (рис. 2.20,а). Давление пересыщенного пара превышает давление насыщенного пара при этой температуре. Эти состояния будут метастабильными (малоустойчивыми) – при возникновении центров конденсации пересыщенный пар быстро превращается в жидкость (переход 3-4), возникает равновесное состояние между насыщенным паром и жидкостью.

Аналогично можно получить метастабильные состояния перегретой жидкости . Для этого необходимо удалить из жидкости и стенок сосуда, в которой она находится, центры парообразования (например, пылинки, пузырьки растворенных в жидкости газов). Перегретой жидкости соответствуют состояния, расположенные на изотерме между точками 6 и 7, (рис. 2.20,а), ее температура будет выше температуры точки кипения. Если в жидкости возникают центры парообразования, то она мгновенно закипает (переход 7-8).

Состояния, соответствующие части изотермы между точками 3 и 7 (они обозначены пунктирной линией), абсолютно неустойчивы (рис. 2.20,а) и не реализуются на практике.

Для примера, на рис. 2.20,б приведены графики расчетных изотерм при различных температурах. При их построении необходимо учитывать, что площади фигур и должны быть одинаковы (рис. 2.20,в), это является следствием второго начала термодинамики.

4. Критические параметры вещества . Рассмотрим, как с помощью экспериментально определенных критических параметров вещества (), соответствующих критической точке, можно оценить постоянные и , входящие в уравнение Ван-дер-Ваальса.

Критической точке на критической изотерме соответствует точка перегиба, причем в этой точке касательная к графику будет горизонтальна. Это означает, что в этой точке равны нулю первая и вторая производные давления газа по объему. Найдем эти производные. Для этого перепишем уравнение (12.99) в следующем виде:

, .

Промежуточное состояние вещества между состоянием реального газа и жидкостью принято называть парообразным или просто паром. Превращение жидкости в пар представляет собой фазовый переход из одного агрегатного состояния в другое. При фазовом переходе наблюдается скачкообразное изменение физических свойств вещества.

Примерами таких фазовых переходов является процесс кипения жидкости с появлением влажного насыщенного пара и последующим переходом его в лишенный влаги сухой насыщенный пар или обратный кипению процесс конденсации насыщенного пара.

Одно из основных свойств сухого насыщенного пара заключается в том, что дальнейший подвод теплоты к нему приводит к возрастанию температуры пара, т. е. перехода его в состояние перегретого пара, а отвод теплоты — к переходу в состояние влажного насыщенного пара. В

Фазовые состояния воды

Рисунок 1. Фазовая диаграмма для водяного пара в T, s координатах.

Область I – газообразное состояние (перегретый пар, обладающий свойствами реального газа);

Область II – равновесное состояние воды и насыщенного водяного пара (двухфазное состояние). Область II также называют областью парообразования;

Область III – жидкое состояние (вода). Область III ограничена изотермой ЕК;

Область IV – равновесное состояние твердой и жидкой фаз;

Область V – твердое состояние;

Области III, II и I разделены пограничными линиями AK (левая линия) и KD (правая линия). Общая точка K для пограничных линий AK и KD обладает особыми свойствами и называется критической точкой . Эта точка имеет параметры p кр , v кр и Т кр , при которых кипящая вода переходит в перегретый пар, минуя двухфазную область. Следовательно, вода не может существовать при температурах выше Т кр.

Критическая точка К имеет параметры:

p кр = 22,136 МПа; v кр = 0,00326 м 3 /кг; t кр = 374,15 °С.


Значения p, t, v и s для обеих пограничных линий приводятся в специальных таблицах термодинамических свойств водяного пара.

Процесс получения водяного пара из воды

На рисунках 2 и 3 изображены процессы нагрева воды до кипения, парообразования и перегрева пара в p, v — и T, s -диаграммах.

Начальное состояние жидкой воды, находящейся под давлением p 0 и имеющей температуру 0 °С, изображается на диаграммах p, v и T, s точкой а . При подводе теплоты при p = const температура ее увеличивается и растет удельный объем. В некоторый момент температура воды достигает температуры кипения. При этом ее состояние обозначается точкой b. При дальнейшем подводе теплоты начинается парообразование с сильным увеличением объема. При этом образуется двухфазная среда — смесь воды и пара, называемая влажным насыщенным паром . Температура смеси не меняется, так как тепло расходуется на испарение жидкой фазы. Процесс парообразования на этой стадии является изобарно-изотермическим и обозначается на диаграмме как участок bc . Затем в некоторый момент времени вся вода превращается в пар, называемый сухим насыщенным . Это состояние обозначается на диаграмме точкой c .

Рисунок 2. Диаграмма p, v для воды и водяного пара.

Рисунок 3. Диаграмма T, s для воды и водяного пара.

При дальнейшем подводе теплоты температура пара будет увеличиваться и будет протекать процесс перегрева пара c — d . Точкой d обозначается состояние перегретого пара. Расстояние точки d от точки с зависит от температуры перегретого пара.

Индексация для обозначения величин, относящихся к различным состояниям воды и пара:

  • величина с индексом «0» относится к начальному состоянию воды;
  • величина с индексом «′» относится к воде, нагретой до температуры кипения (насыщения);
  • величина с индексом «″» относится к сухому насыщенному пару;
  • величина с индексом «x » относится к влажному насыщенному пару;
  • величина без индекса относится к перегретому пару.

Процесс парообразования при более высоком давлении p 1 > p 0 можно отметить, что точка a, изображающая начальное состояние воды при температуре 0 °С и новом давлении, остается практически на той же вертикали, так как удельный объем воды почти не зависит от давления.

Точка b′ (состояние воды при температуре насыщения) смещается вправо на p, v -диаграмме и поднимается вверх на T,s -диаграмме. Это потому, что с увеличением давления увеличивается температура насыщения и, следовательно, удельный объем воды.

Точка c′ (состояние сухого насыщенного пара) смещается влево, т. к. с увеличением давления удельный объем пара уменьшается, несмотря на увеличение температуры.

Соединение множества точек b и c при различных давлениях дает нижнюю и верхнюю пограничные кривые ak и kc. Из p, v -диаграммы видно, что по мере увеличения давления разность удельных объемов v″ и v′ уменьшается и при некотором давлении становится равной нулю. В этой точке, называемой критической, сходятся пограничные кривые ak и kc. Состояние, соответствующее точке k , называется критическим. Оно характеризуется тем, что при нем пар и вода имеют одинаковые удельные объемы и не отличаются по свойствам друг от друга. Область, лежащая в криволинейном треугольнике bkc p, v -диаграмме), соответствует влажному насыщенному пару.

Состояние перегретого пара изображается точками, лежащими над верхней пограничной кривой kc .

На T, s -диаграмме площадь 0abs′ соответствует количеству теплоты, необходимого для нагрева жидкой воды до температуры насыщения.

Количество подведенной теплоты, Дж/кг, равное теплоте парообразования r, выражается площадью s′bcs, и для нее имеет место соотношение:

r = T (s″ — s′ ).

Количество подведенной теплоты в процессе перегрева водяного пара изображается площадью s″cds .

На T, s -диаграмме видно, что по мере увеличения давления теплота парообразования уменьшается и в критической точке становиться равной нулю.

Обычно T, s -диаграмма применяется при теоретических исследованиях, так как практическое использование ее сильно затрудняется тем, что количества теплоты выражаются площадями криволинейных фигур.

По материалам моего конспекта лекций по термодинамике и учебника «Основы энергетики». Автор Г. Ф. Быстрицкий. 2-е изд., испр. и доп. — М. :КНОРУС, 2011. — 352 с.

| | |
Критическая точка - сочетание значений температуры и давления (или, что эквивалентно, молярного объёма), при которых исчезает различие в свойствах жидкой и газообразной фаз вещества.

Критическая температура фазового перехода - значение температуры в критической точке. При температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.

Физическое значение

В критической точке плотность жидкости и её насыщенного пара становятся равны, а поверхностное натяжение жидкости падает до нуля, поэтому исчезает граница раздела фаз жидкость-пар.

Для смеси веществ критическая температура не является постоянной величиной и может быть представлена пространственной кривой (зависящей от пропорции составляющих компонентов), крайними точками которой являются критические температуры чистых веществ - компонентов рассматриваемой смеси.

Критической точке на диаграмме состояния вещества соответствуют предельные точки на кривых равновесия фаз, в окрестностях точки фазовое равновесие нарушается, происходит потеря термодинамической устойчивости по плотности вещества. По одну сторону от критической точки вещество однородно (обычно при), а по другую - разделяется на жидкость и пар.

В окрестностях точки наблюдаются критические явления: из-за роста характеристических размеров флуктуаций плотности резко усиливается рассеяние света при прохождении через вещество - при достижении размеров флуктуаций порядков сотен нанометров, т. е. длин волн света, вещество становится непрозрачным - наблюдается его критическая опалесценция. Рост флуктуаций приводит также к усилению поглощения звука и росту его дисперсии, изменению характера броуновского движения, аномалиям вязкости, теплопроводности, замедлению установления теплового равновесия и т. п.

На этой типичной фазовой диаграмме граница между жидкой и газообразной фазой изображена в виде кривой, начинающейся в тройной точке, и заканчивающейся в критической точке.

История

Впервые явление критического состояния вещества было обнаружено в 1822 году Шарлем Каньяром де Ла-Туром, а в 1860 году повторно открыто Д.И.Менделеевым. Систематические исследования начались с работ Томаса Эндрюса. Практически явление критической точки можно наблюдать при нагревании жидкости, частично заполняющей запаянную трубку. По мере нагрева мениск постепенно теряет свою кривизну, становясь всё более плоским, а при достижении критической температуры перестает быть различимым.

Параметры критических точек некоторых веществ
Вещество
Единицы Кельвины Атмосферы см³/моль
Водород 33,0 12,8 61,8
Кислород 154,8 50,1 74,4
Ртуть 1750 1500 44
Этанол 516,3 63,0 167
Диоксид углерода 304,2 72,9 94,0
Вода 647 218,3 56
Азот 126.25 33,5
Аргон 150.86 48,1
Бром 588 102
Гелий 5.19 2,24
Йод 819 116
Криптон 209.45 54,3
Ксенон 289.73 58
Мышьяк 1673
Неон 44.4 27,2
Радон 378
Селен 1766
Сера 1314
Фосфор 994
Фтор 144.3 51,5
Хлор 416.95 76

Критические точки существуют не только для чистых веществ, но и, в некоторых случаях, для их смесей и определяют параметры потери устойчивости смеси (с разделом фаз) - раствор (одна фаза). Примером такой смеси может служить смесь фенол-вода.

Простые газы в критической точке, по некоторым данным, обладают свойством сжатия до сверхвысоких плотностей без роста давления, при условии строгого поддержания температуры, равной критической точке, и высокой степени их чистоты (молекулы инородных газов становятся ядрами перехода в газообразную фазу, что ведет к лавинообразному росту давления). Иными словами, вещество сжимается, как газ, но сохраняет давление, равное таковому в жидкости. Реализация этого эффекта на практике позволит сверхплотное хранение газов.

Критическая точка (термодинамика) Информацию О

Сверхкритическое состояние – четвертая форма агрегатного состояния, в которое способны переходить многие органические и неорганические вещества.

Впервые сверхкритическое состояние вещества обнаружил Каньяр де ла Тур в 1822 году. Настоящий интерес к новому явлению возник 1869 году после экспериментов Т.Эндрюса. Проводя опыты в толстостенных стеклянных трубках, учёный исследовал свойства CO 2 , легко сжижающегося при повышении давления. В результате он установил, что при 31° С и 7,2 МПа , мениск – граница, разделяющая жидкость и находящийся в равновесии с ней пар, исчезает, при этом система становится гомогенной (однородной) и весь объем приобретает вид молочно-белой опалесцирующей жидкости. При дальнейшем повышении температуры она быстро становится прозрачной и подвижной, состоящей из постоянно перетекающих струй, напоминающих потоки теплого воздуха над нагретой поверхностью. Дальнейшее повышение температуры и давления не приводило к видимым изменениям.

Точку, в которой происходит такой переход, он назвал критической, а состояние вещества, находящегося выше этой точки – сверхкритическим. Несмотря на то, что внешне это состояние напоминает жидкость, в применении к нему сейчас используется специальный термин – сверхкритический флюид (от английского слова fluid , то есть «способный течь»). В современной литературе принято сокращенное обозначение сверхкритических флюидов – СКФ.

Расположение линий, разграничивающих области газообразного, жидкого и твердого состояний, а также положение тройной точки, где сходятся все три области, для каждого вещества индивидуальны. Сверхкритическая область начинается в критической точке (обозначена звездочкой), которая характеризуется непременно двумя параметрами – температурой (Т кр .) и давлением (Р кр .). Понижение либо температуры, либо давления ниже критических значений выводит вещество из сверхкритического состояния.

Факт существования критической точки позволил понять, почему некоторые газы, например, водород, азот и кислород долгое время не удавалось получить в жидком виде при повышении давления, из-за чего их называли перманентными газами (от латинского permanentis – «постоянный»). На приведённой выше диаграмме видно, что область существования жидкой фазы расположена слева от линии критической температуры. Таким образом, для сжижения какого-либо газа его необходимо сначала охладить до температуры ниже критической. У СО 2 критическая температура выше комнатной, поэтому его можно сжижать при указанных условиях, повышая давление. У азота критическая температура намного ниже: –146,95° С, поэтому, если сжимать азот, находящийся при нормальных условиях, можно достичь в конечном итоге сверхкритической области, но жидкий азот при этом образоваться не может. Необходимо сначала охладить азот ниже критической температуры и затем, повышая давление, достичь области, где возможно существование жидкости. Аналогичная ситуация для водорода, кислорода, поэтому перед сжижением их охлаждают до температуры ниже критической, и лишь затем повышают давление. Сверхкритическое состояниевозможно для большинства веществ, нужно лишь, чтобы вещество не разлагалось при критической температуре. В сравнении с указанными веществами критическая точка воды достигается с большим трудом: t кр = 374,2° С и Р кр = 21,4 МПа .

Критическая точка признается как важный физический параметр вещества, такой же, как температуры плавления или кипения. Плотность СКФ исключительно низкая, например, вода в состоянии СКФ имеет плотность в три раза ниже, чем при обычных условиях. Все СКФ имеют крайне низкую вязкость.

Сверхкритические флюиды представляют собой нечто среднее между жидкостью и газом. Они могут сжиматься как газы (обычные жидкости практически несжимаемы) и, в тоже время, способны растворять многие вещества в твёрдом и жидком состояниях, что газам несвойственно. Сверхкритический этанол (при температуре выше 234° С) очень легко растворяет некоторые неорганические соли (CoCl 2 , KBr , KI ). Диоксид углерода, закись азота, этилен и некоторые другие газы в состоянии СКФ приобретают способность растворять многие органические вещества – стеариновую кислоту, парафин, нафталин. Свойства сверхкритического СО 2 как растворителя можно регулировать – при повышении давления его растворяющая способность резко увеличивается.

Сверхкритические флюиды стали широко использовать только в 1980-х, когда общий уровень развития промышленности сделал установки для получения СКФ широко доступными. С этого момента началось интенсивное развитие сверхкритических технологий. СКФ – это не только хорошие растворители, но и вещества с высоким коэффициентом диффузии, т.е. они легко проникают в глубинные слои различных твердых веществ и материалов. Наиболее широкое применение нашёл сверхкритический СО 2 , который оказался растворителем широкого круга органических соединений. Диоксид углерода стал лидером в мире сверхкритических технологий, т.к. обладает целым комплексом преимуществ. Перевести его в сверхкритическое состояние достаточно легко (t кр – 31° С, Р кр – 73,8 атм. ), кроме того, он не токсичен, не горюч, не взрывоопасен, к тому же, дешев и доступен. С точки зрения любого технолога он является идеальным компонентом любого процесса. Особую привлекательность ему придает то, что он является составной частью атмосферного воздуха и, следовательно, не загрязняет окружающую среду. Сверхкритический СО 2 можно считать экологически абсолютно чистым растворителем. Приведём только некоторые примеры его использования.

Кофеин – препарат, используемый для улучшения деятельности сердечно-сосудистой системы, получают из кофейных зерен даже без их предварительного измельчения. Полнота извлечения достигается за счет высокой проникающей способности СКФ. Зерна помещают в автоклав – ёмкость, выдерживающую повышенное давление, затем подают в неё газообразный СО 2 , далее создают необходимое давление (>73 атм. ), в результате СО 2 переходит в сверхкритическое состояние. Всё содержимое перемешивают, после чего флюид вместе с растворенным кофеином сливают в открытую емкость. Диоксид углерода, оказавшись в условиях атмосферного давления, превращается в газ и улетает в атмосферу, а экстрагированный кофеин остается в открытой емкости в чистом виде.

Применение СКФ оказалось весьма успешным для очистки от загрязнений электронных схем в процессе их производства, так как на них не остается никаких следов очищающего растворителя.


В связи с быстрыми темпами выработки активной части запасов легкой нефти резко возрос интерес к методам увеличения нефтеотдачи пластов. Если в 70–80 годы XX века число проектов, направленных на решение проблемы увеличения нефтеотдачи посредством нагнетания смешивающихся углеводородных растворителей, «инертных» газов и диоксида углерода было сопоставимо, то в конце XX и начале XXI столетий только метод нагнетания СО 2 имел устойчивую тенденцию роста. Эффективность применения СО 2 для повышения нефтеотдачи доказана не только экспериментальными и теоретическими работами, но и результатами многочисленных промышленных испытаний.

Не стоит забывать, что технология увеличения нефтеотдачи пластов с использованием СО 2 позволяет параллельно решать проблему консервации огромного количества выделяемого промышленностью углекислого газа.

Особенности процесса воздействия нагнетаемого CO 2 на нефтегазовую залежь зависят от его агрегатного состояния.

Превышение давления и температуры выше критических значений для углекислого газа (а это наиболее вероятная ситуация в пластовых условиях), предопределяет его сверхкритическое состояние. В этом случае CO 2 , обладающий исключительной растворяющей способностью по отношению к углеводородным жидкостям при прямом растворении в пластовой нефти, снижает её вязкость и резко улучшает фильтрационные свойства. Указанное обстоятельство даёт все основания отнести СКФ – технологии повышения нефтеотдачи пластов к одним из наиболее перспективных.

ГЛАВА IV.
ТЕРМОДИНАМИКА РАСТВОРОВ (РАСТВОРЫ)

Поделитесь с друзьями или сохраните для себя:

Загрузка...