Влияние ретикулярной формации на кору головного мозга. Нарушение функций ретикулярной формации. Ретикулярная формация мозга: строение и функции

Сеть из нервных клеток, находящаяся в середине ствола мозга, была описана венгерским анатомом Йожефом Ленхош- шеком (Jozsef Lenhossek) еще в 1855 г. Филогенетически она представляет собой древнюю группу клеток, которая есть у всех позвоночных и играет важную роль в регуляции актив- ности центральной нервной системы,

В середине - ретикулярные клетки; по бокам - сенсорные пути. У человека ретукулярная формация начинается выше спинного мозга в продолговатом мозгу и тянется до промежуточного мозга через мост и средний мозг. Особенность этого образования состоит в том, что латерально (с боков) оно окружено сенсорными путями, описанными "в первой части книги. Таким образом, волокна ретикулярной формации лежат в центре и окружены снаружи слоем сенсорных путей. Нервная сеть ретикулярной формации весьма неоднородна: размеры нейронов варьируют в пределах от 10 до 100 мкм, и расположены они также по-разному. В ретикулярной формации возможно как быстрое, так и медленное проведение импульсов. По мнению большинства авторов, она лишена какой бы то ни было организации: в этом диффузном вытянутом в длину образовании нельзя различить никаких определенных структур. Недавно, правда, исследователи предположили наличие в ретикулярной формации раздельных групп клеток. Однако по-прежнему все согласны в том, что различия здесь только функциональные: в одних участках найдены тормозные, а в других - активирующие ядра.
Множественные связи. Кахал первый пришел к заключению, что все сенсорные пути, идущие от спинного и продолговатого мозга в кору, отдают коллатерали к активирующей ретикулярной системе. Для ретикулярной активации эти коллатерали имеют первостепенное значение. Коллатерали к ретикулярной формации идут также от коры, таламуса и мозжечка. Со своей стороны ретикулярная формация тоже посылает волокна в кору, а также к мотонейронам спинного мозга.
«Нейроны бодрствования». Функция активирующей ретикулярной формации была впервые продемонстрирована в опытах Мэгуна и Моруцци в 1949 г. Они стимулировали ретикулярную систему через электроды, вживленные в ствол мозга, и таким образом вызывали реакцию пробуждения, т. е. будили спящее животное. При этом в картине ЭЭГ можно было наблюдать переход от альфа- к бета-активности. Соответственно менялось и поведение животного.
Восходящая активирующая система. Весьма интересно то, что пробуждение можно вызвать изолированной стимуляцией ретикулярной системы даже при перерезанных сенсорных путях. Между тем в противоположном случае - после повреждения ретикулярной формации высокочастотным электрическим током при сохранности всех сенсорных путей - никакая стимуляция не выводит животное из глубокого сна. Как было установлено, открытие Мэгуна и Моруцци находится в связи с описанным выше наблюдением Бремера и с павловским ориентировочным рефлексом. Систему в стволе мозга, поддерживд-

ющую тонус коры больших полушарий, Мэгун назвал восходящей активирующей системой (рис. 37).
Пробуждение, но не информация. Степень ретикулярной активности определяется исключительно импульсами, поступающими в ретикулярную формацию по коллатералям сенсорных путей, т. е. внешними раздражениями. Ретикулярная формация лишена собственной спонтанной активности. Ее функция состоит в том, чтобы «пробуждать» всю массу нейронов в обоих больших полушариях. Поддержание бодрствования-это,
Соматосенсорная
кора ^Таламус

вероятно, функция коры; ретикулярная формация только «включает» корковые нейроны. Она является общей «системой тревоги», которая на все сенсорные импульсы отвечает одинаково независимо от того, приходят ли они от слуховых, зрительных или кожных рецепторов. Ее функция состоит в пробуждении коры, а не в передаче конкретной информации.
Запуск реакции тревоги. Весьма вероятно, что активирующая ретикулярная формация связана также и с эндокринными механизмами. Например, после введения подопытным животным адреналина можно судить о ретикулярной активации по десинхронизации ЭЭГ. Показано, что адреналин, т. е. повышенная симпатическая активность, неизменно вызывает ретикулярную активацию, которая усиливает бодрствующее состояние животного. Возникающее в результате сложное видоизменение функций организма Кэннон (Cannon) назвал реакцией тревоги (alarm reaction). Это состояние проявляется в ускорении

ритма сердца, повышении кровяного давления и температуры тела, гипергликемии и т. д. Таким образом, активирующая ретикулярная система может и сама вызывать повышение симпатического тонуса, который в свою очередь усиливает состояние бодрствования и готовность всего организма к защите.
Защита от стрессорных факторов. Со времени работы Селье (Selye) стало известно, что вся гормональная система - прежде всего гипофиз, расположенный у основания черепа, и кора надпочечников - активируется цепной реакцией, которую запускает усиленная симпатическая активность. Поэтому весьма вероятно, что вся сложная система защиты и адаптации регулируется активирующей ретикулярной формацией. Вредоносные внешние стимулы (стрессорные воздействия) активируют ретикулярную формацию, а тем самым также и кору по колла- тералям сенсорных путей. Одновременно возрастает симпатическая активность и выделяется адреналин, продлевая бодрствующее состояние коры. Таким образом, неспецифическнй гормональный защитный механизм, описанный Кэнноном и Селье, и активирующая ретикулярная система функционально взаимосвязаны.
Управление положением тела. Ретикулярная активирующая система не только участвует в гормональной регуляции, но выполняет и другие функции. Подробно изучено ее участие в контроле двигательной активности и поддержании мышечного тонуса. В коре и подкорковых областях имеется ряд специальных двигательных центров, которые составляют часть сложной саморегулирующейся моторной системы, включающей многие отделы от спинного мозга до коры. Мозжечок тоже играет важную роль в этой системе. Самый нижний - спинальный - уровень эфферентной моторной системы находится под контролем активирующей ретикулярной формации. Этот контроль осуществляется двумя видами воздействий.
Во-первых, ретикулярная формация влияет на рефлексы, контролирующие положение тела вопреки силе тяжести и другим отклоняющим силам (мы уже упоминали об этих рефлексах в связи с проприоцепторами, образующими афферентное звено коркового контроля двигательной активности). Этот контроль, вероятно, осуществляется по гамма-эфферентным во- локнам, идущим к мышечным веретенам. Во-вторых, ретикулярные влияния играют важную роль в поддержании тонуса мышц в покое. Скелетные мышцы не расслабляются, даже когда они неактивны, а находятся в состоянии некоторого общего тонуса. Их можно сравнить со струнами рояля, которые натянуты еще до того, как будут изданы звуки. В регуляции мышечного тонуса очень важную роль играет афферентная активность проприоцепторов (мышечных веретен) (см. с. 57). Таким
образом, при оборонительных реакциях или при агрессии ретикулярная формация не только активирует кору и запускает гормональные реакции, но также приводит скелетные мышцы в состояние готовности.
Регуляция деятельности вегетативной нервной системы. Уже описанные выше функции свидетельствуют о важном значении этой сравнительно небольшой группы нейронов. Но, кроме того, с ретикулярной формацией имеют связь центры жизненно важных функций, находящиеся в продолговатом мозгу: нейроны, контролирующие дыхание, и ядра, управляющие кровообращением и различными пищеварительными механизмами. Таким образом, можно сказать, что диффузная ретикулярная система интегрирует всю вегетативную активность, регулируемую стволом мозга.
Тормозные эффекты. Как уже говорилось, стимулы, вызывающие импульсную активность в экстеро- и интероцепторах, активируют ретикулярную формацию, которая в свою очередь усиливает активность коры. Однако некоторые афферентные импульсы, наоборот, уменьшают ретикулярную активность и этим снижают тонус коры. Анализ волокон IX и X черепных нервов выявил сенсорные волокна, которые начинаются в стенке аорты и сонной артерии и стимуляция которых приводит к ослаблению ретикулярной активности.
Физиологическая функция этих тормозных эффектов не совсем ясна. Возможно, они составляют часть тормозного аппарата (Моруцци и др.), ответственного за состояние сна. Тормозные ретикулярные нейроны можно найти и внутри и вне ретикулярной формации. Этот вопрос будет подробно рассмотрен в главе, посвященной сну. Здесь же тормозные механизмы упоминаются только как часть саморегулирующегося аппарата ретикулярной формации.
Саморегуляция. Организм животного или человека ввиду его способности к саморегуляции можно рассматривать как автоматическую систему. В такой системе регуляция - это процесс, с помощью которого поддерживается постоянство определенных ее параметров. Понятие о регуляции возникло в биологии задолго до эры кибернетики и компьютеров. Более того, различные биологические системы использовались как модели для конструирования автоматических регуляторов. Описанный Кэнноном принцип гомеостаза явился основой ряда приборов, созданных для изучения саморегуляции.
Обратная связь. Основным механизмом саморегуляции является обратная связь, которая обеспечивает непрерывный приток в контрольный центр информации о результатах его команд. Цель обратной связи состоит в подстройке регуляторных воздействий, в их коррекции центральным регулирующим аппаратом. В технике обратная связь используется, в частности,
в сервомеханизмах. Автоматический контроль невозможен без обратной связи, т. е. без получения контрольным центром информации об эффекте его команд. Обратная связь бывает положительной, если она приводит к усилению возникшего отклонения, и отрицательной, если она уменьшает такое отклонение. В сенсорных системах и в функции пробуждения действуют оба эти механизма обратной связи.
Церебральный управляющий центр. Самую важную часть всех саморегулирующихся автоматических систем составляет аппарат, контролирующий приспособление организма и обеспечивающий постоянство его параметров. Эта часть называется управляющим центром. Человеческий мозг можно считать таким центром, в котором механизмы обратной связи модифицируют команды и этим обеспечивают оптимальное функционирование.
Торможение ретикулярной формации. Если считать ретикулярную формацию блоком, регулирующим уровень бодрствования организма, то должен существовать механизм обратной связи, который тормозил бы ее пробуждающую активность. В последнее время описано несколько таких механизмов.
Кортикальное торможение. Первый из этих механизмов - тормозное действие коры. Между корой и ретикулярной формацией есть не только восходящие, но и нисходящие волокна, которые проводят импульсы от коры. Таким образом, ретикулярные импульсы, регулирующие тонус коры, сами контролируются корковыми центрами. Вместе эти отделы образуют саморегулирующуюся систему, построенную по принципу рефлекторного кольца.
Таламическое торможение. Таламус тоже содержит нервную сеть, которая за ее диффузное строение была названа таламической ретикулярной формацией и которая участвует в контроле ретикулярной активации. Как мы увидим, низкоамплитудная высокочастотная ЭЭГ, характерная для бодрствования, является результатом возбуждения стволовой ретикулярной формации, а высокоамплитудная низкочастотная активность во время сна обусловлена таламической ретикулярной активностью. Таламические ретикулярные клетки являются антагонистами ретикулярной формации ствола мозга. Электростимуляция этих таламических нейронов может оказывать тормозное действие, которое обусловливает наряду с другими эффектами медленную синхронизованную активность коры. Таламические тормозные структуры впервые были описаны швейцарским физиологом Гессом (Hess) около тридцати лет назад.
Медуллярное торможение. Антагонистами ретикулярной активности являются также тормозные нейроны в продолговатом мозгу (medulla oblongata), описанные Моруцци. Хотя эти нейроны и входят составной частью в ретикулярную формацию,


они выполняют не активирующую, а тормозную функцию. По мнению Моруцци и других авторов, медуллярные тормозные нейроны играют важную роль в механизме сна.
Бодрствование головного мозга поддерживается саморегулирующейся системой, которая состоит из ретикулярной формации и описанных выше тормозных структур. Уровень тонуса коры, т. е. способность мозга возбуждаться под действием сенсорного притока, зависит от баланса между активирующими и тормозными механизмами (рис. 38).

Формация Ретикулярная, Система Ретикулярная Активирующая (Reticular Activating System)
совокупность нейронов и соединяющих их нервных волокон, расположенных в стволе мозга и образующих сеть. Ретикулярная формация связана со всеми органами чувств, двигательными и чувствительными областями коры большого мозга, таламусом и гипоталамусом, спинным мозгом. Она регулирует уровень возбудимости и тонуса различных отделов центральной нервной системы, участвует в регуляции уровня сознания, эмоций, сна и бодрствования, вегетативных функций, целенаправленных движений (ред.). Недавно было установлено, что один нейрон ретикулярной формации может иметь синапсы более чем с 25 000 других нейронов.
Источник: "Медицинский словарь"

Ведущее значение в развитии астенического синдрома принадлежит нарушению функции ретикулярной активирующей системы (РАС)
(R.Du Boistesselin, 1988; C.Feuerstein, 1992).

РАС является основным звеном в патофизиологии астении , представляя собой плотную нейрональную сеть, ответственную за управление энергетическими ресурсами организма. Она вовлечена в контроль координации произвольных движений, автономную и эндокринную регуляцию, сенсорное восприятие, запоминание, активацию коры головного мозга. Благодаря большому количеству нейрофизиологических связей РАС играет важную роль в физической активности, модуляции психологического отношения, аффективного выражения, а также в интеллектуальных функциях.
Астения, по-видимому, формирует сигнал о перегрузке РАС и плохом управлении энергетическими ресурсами организма.

Полноценное функционирование сознания предполагает состояние бодрствования , обусловленное полноценной реализацией когнитивной функции полушарий головного мозга и их взаимоотношений с пробуждающими механизмами ретикулярной формации, распространение ядер и проводящих путей которой обнаружены в диэнцефальной области, среднем мозге, варолиевом мосте и продолговатом мозге.

Активирующая ретикулярная формация ствола мозга
Сеть из нервных клеток, находящаяся в середине ствола мозга, была описана венгерским анатомом Йожефом Ленхошшеком (Jozsef Lenhossek) еще в 1855 г. Филогенетически она представляет собой древнюю группу клеток, которая есть у всех позвоночных и играет важную роль в регуляции активности центральной нервной системы, cостояние бодрствования и готовность всего организма к защите.

«Нейроны бодрствования». Функция активирующей ретикулярной формации была впервые продемонстрирована в опытах Мэгуна и Моруцци в 1949 г. Они стимулировали ретикулярную систему через электроды, вживленные в ствол мозга, и таким образом вызывали реакцию пробуждения, т. е. будили спящее животное. При этом в картине ЭЭГ можно было наблюдать переход от альфак бета-активности. Соответственно менялось и поведение животного.
Восходящая активирующая система. Весьма интересно то, что пробуждение можно вызвать изолированной стимуляцией ретикулярной системы даже при перерезанных сенсорных путях. Между тем в противоположном случае - после повреждения ретикулярной формации высокочастотным электрическим током при сохранности всех сенсорных путей - никакая стимуляция не выводит животное из глубокого сна.

Пробуждение, но не информация. Степень ретикулярной активности определяется исключительно импульсами, поступающими в ретикулярную формацию по коллатералям сенсорных путей, т. е. внешними раздражениями. Ретикулярная формация лишена собственной спонтанной активности . Ее функция состоит в том, чтобы «пробуждать» всю массу нейронов в обоих больших полушариях. Поддержание бодрствования - это, вероятно, функция коры; ретикулярная формация только «включает» корковые нейроны. Она является общей «системой тревоги», которая на все сенсорные импульсы отвечает одинаково независимо от того, приходят ли они от слуховых, зрительных или кожных рецепторов. Ее функция состоит в пробуждении коры, а не в передаче конкретной информации.

Запуск реакции тревоги . Весьма вероятно, что активирующая ретикулярная формация связана также и с эндокринными механизмами . Например, после введения подопытным животным адреналина можно судить о ретикулярной активации по десинхронизации ЭЭГ. Показано, что адреналин, т. е. повышенная симпатическая активность, неизменно вызывает ретикулярную активацию, которая усиливает бодрствующее состояние животного. Возникающее в результате сложное видоизменение функций организма Кэннон (Cannon) назвал реакцией тревоги (alarm reaction). Это состояние проявляется в ускорении ритма сердца, повышении кровяного давления и температуры тела, гипергликемии и т. д. Таким образом, активирующая ретикулярная система может и сама вызывать повышение симпатического тонуса, который в свою очередь усиливает с Защита от стрессорных факторов. Со времени работы Селье (Selye) стало известно, что вся гормональная система - прежде всего гипофиз, расположенный у основания черепа, и кора надпочечников - активируется цепной реакцией, которую запускает усиленная симпатическая активность. Поэтому весьма вероятно, что вся сложная система защиты и адаптации регулируется активирующей ретикулярной формацией. Вредоносные внешние стимулы (стрессорные воздействия) активируют ретикулярную формацию , а тем самым также и кору по коллатералям сенсорных путей. Одновременно возрастает симпатическая активность и выделяется адреналин , продлевая бодрствующее состояние коры. Таким образом, неспецифический гормональный защитный механизм , описанный Кэнноном и Селье, и активирующая ретикулярная система функционально взаимосвязаны.

Управление положением тела. Ретикулярная активирующая система не только участвует в гормональной регуляции, но выполняет и другие функции. Подробно изучено ее участие в контроле двигательной активности и поддержании мышечного тонуса. В коре и подкорковых областях имеется ряд специальных двигательных центров, которые составляют часть сложной саморегулирующейся моторной системы, включающей многие отделы от спинного мозга до коры. Мозжечок тоже играет важную роль в этой системе. Самый нижний - спинальный - уровень эфферентной моторной системы находится под контролем активирующей ретикулярной формации. Этот контроль осуществляется двумя видами воздействий.
Во-первых, ретикулярная формация влияет на рефлексы, контролирующие положение тела вопреки силе тяжести и другим отклоняющим силам (мы уже упоминали об этих рефлексах в связи с проприоцепторами, образующими афферентное звено коркового контроля двигательной активности). Этот контроль, вероятно, осуществляется по гамма-эфферентным волокнам, идущим к мышечным веретенам. Во-вторых, ретикулярные влияния играют важную роль в поддержании тонуса мышц в покое. Скелетные мышцы не расслабляются, даже когда они неактивны, а находятся в состоянии некоторого общего тонуса. Их можно сравнить со струнами рояля, которые натянуты еще до того, как будут изданы звуки. В регуляции мышечного тонуса очень важную роль играет афферентная активность проприоцепторов (мышечных веретен) (см. с. 57). Таким образом, при оборонительных реакциях или при агрессии ретикулярная формация не только активирует кору и запускает гормональные реакции, но также приводит скелетные мышцы в состояние готовности.
Церебральный управляющий центр. Самую важную часть всех саморегулирующихся автоматических систем составляет аппарат, контролирующий приспособление организма и обеспечивающий постоянство его параметров. Эта часть называется управляющим центром. Человеческий мозг можно считать таким центром, в котором механизмы обратной связи модифицируют команды и этим обеспечивают оптимальное функционирование.

Функция РАС
Координация произвольных движений
Автономная и эндокринная регуляция
Сенсорное восприятие
Запоминание
Активация коры головного мозга
Играет важную роль в:
o Физической активности
o Модуляция психологического отношения, аффективного выражения
o Интеллектуальной функциях

Приведены цитаты из книги:

Адам Д. Восприятие, сознание, память. Размышления биолога: Пер. с англ./Перевод Алексеенко Н. Ю.; Под ред. и с предисл. Е. Н. Соколова.

Разнообразие функций, осуществляемых различными отделами ретикулярной формации, представлено в таблице ниже.

а) Генераторы программ движений . К программам движений черепных нервов относят следующие:
Содружественные (параллельные) движения глаз, местно контролируемые двигательными узлами (центрами взора) в среднем мозге и мосту, имеющие связь с ядрами двигательных нервов глаз.
Ритмичные жевательные движения, контролируемые супратригеминальным премоторным ядром моста.
Глотание, рвотные движения, кашель, зевание и чихание контролируют отдельные премоторные ядра продолговатого мозга, имеющие связь с соответствующими черепными нервами и дыхательным центром.

Слюноотделительные ядра относят к мелкоклеточной ретикулярной формации моста и продолговатого мозга. От них отходят преганглионарные парасимпатические волокна к лицевому и языкоглоточному нервам.

Ретикулярная формация (РФ).
(А) Отделы. (Б) Группы аминергических и холинергических клеток.

1. Генераторы программ движений . Из экспериментов на животных давно установлено, что генераторы программ движений низших позвоночных и низших млекопитающих расположены в сером веществе спинного мозга, соединяясь с помощью нервов с каждой из четырех конечностей. Данные генераторы в спинном мозге представляют собой электрические нейронные сети, последовательно доставляющие сигналы к сгибательным и разгибательным группам мышц. Генераторная активность спинного мозга подчиняется командам из высших центров-двигательной области среднего мозга (ДОСМ).

К ДОСМ относят ножкомостовое ядро, прилежащее к верхней мозжечковой ножке в месте ее прохождения в области верхнего края четвертого желудочка и соединения со средним мозгом. От этих ядер в составе центрального покрышечного пути отходят нисходящие волокна к оральному и каудальному ядрам моста, образованным двигательными нейронами, иннервирующими мышцы разгибатели, и к крупноклеточным нейронам продолговатого мозга, контролирующим нейроны, иннервирующие мышцы-сгибатели.

Основной механизм реабилитации при поражениях спинного мозга-активация спинномозговых двигательных рефлексов у пациентов, перенесших травмы с частичным или полным разрывом спинного мозга. В настоящее время хорошо известно, что даже после полного разрыва на уровне шейного или грудного отдела возможна активация пояснично-крестцовых программ движений путем продолжительной электрической стимуляции твердой мозговой оболочки на уровне поясничных сегментов. Стимуляция в значительной степени активирует волокна задних корешков, запуская образование импульсов в основании переднего рога.

При поверхностной электромиографии (ЭМГ) со сгибательных и разгибательных мышц было обнаружено последовательное возбуждение нейронов мышц сгибателей и разгибателей, хотя данная программа не соответствовала нормальной. Для образования нормальной программы разрыв должен быть неполным с сохранением части нисходящих путей от ножкомостового ядра.

Создание истинных шагательных движений при полном разрыве возможно, если пациента поставить на беговую дорожку с одновременной стимуляцией твердой мозговой оболочки, преимущественно за счет получения генератором дополнительных чувствительных и проприоцептивных импульсов. Сила мышц и скорость ходьбы будут нарастать в течение нескольких недель, но недостаточно для ходьбы без использования ходунков.

Современные исследования направлены на улучшение возможности «создания моста» с супраспинальными двигательными волокнами путем очищения от остатков тканей в месте разрыва и замещения этих тканей составом, физически и химически стимулирующим регенерацию аксонов.

2. Высшие центры контроля мочеиспускания описаны в следующей статье на сайте.


Общая схема контроля движений.

б) Контроль дыхания . Дыхательный цикл в значительной степени регулируют дорсальное и вентральное дыхательные ядра, расположенные в верхнем отделе продолговатого мозга с каждой стороны от срединной линии. Дорзальное дыхательное ядро расположено в среднелатеральном отделе ядра одиночного пути. Вентральное ядро расположено позади двойного ядра (отсюда название - позадидвойное ядро). Оно отвечает за выдох; поскольку этот процесс в норме происходит пассивно, активность нейронов при обычном дыхании относительно низкая, но значительно возрастает при нагрузках. Третье, медиальное парабрахиальное ядро, прилежащее к голубому пятну, вероятно, имеет значение в механизме дыхания, возникающем в состоянии бодрствования.

Парабрахиальное ядро , образованное множеством подгрупп нейронов, вместе с описанными выше аминергической и холинергической системами участвует в поддержании состояния бодрствования путем активации коры головного мозга. Стимуляция этого ядра миндалевидным телом при тревожных расстройствах приводит к характерной гипервентиляции.

Дорзальное дыхательное ядро контролирует процесс вдоха. От него отходят волокна к двигательным нейронам на противоположной стороне спинного мозга, иннервирующим диафрагму, межреберные и вспомогательные дыхательные мышцы. Ядро получает восходящие возбуждающие импульсы от хеморецепторов хемочувствительной области продолговатого мозга и каротидного синуса.

Вентральное дыхательное ядро отвечает за выдох. При спокойном дыхании оно работает как нейронная цепь, участвуя в реципрокном торможении центра вдоха посредством ГАМК-ергических (γ-аминомасляная кислота) вставочных нейронов. При форсированном дыхании оно активирует клетки переднего рога, иннервирующие брюшные мышцы, отвечающие за спадение легких.

1. Хемочувствительная область продолговатого мозга . Сосудистое сплетение четвертого желудочка продуцирует спинномозговую жидкость (СМЖ), проходящую через латеральную апертуру (Лушка) четвертого желудочка. Клетки латеральной ретикулярной формации на поверхности продолговатого мозга в этой области имеют исключительную чувствительность к концентрации ионов водорода (Н +) в омывающей СМЖ. Фактически, эта хемочувствительная область продолговатого мозга анализирует парциальное давление углекислого газа (рСО 2) в СМЖ, которое соответствует рСО 2 крови, снабжающей головной мозг. Любое повышение концентрации ионов Н + приводит к стимуляции дорсального дыхательного ядра путем прямой синаптической связи (в продолговатом мозге расположено несколько других хемочувствительных ядер).

2. Хеморецепторы каротидного синуса . Каротидный синус размером с булавочную головку прилежит к стволу внутренней сонной артерии и получает от этой артерии веточку, разветвляющуюся внутри. Кровоток через каротидный синус настолько интенсивный, что артериовенозное парциальное давление кислорода (рО 2) изменяется менее чем на 1 %. Хеморецепторы представляют собой клетки клубочка, иннервируемые ветвями синусного нерва (ветвь IX черепного нерва). Каротидные хеморецепторы реагируют как на снижение рО 2 , так и на повышение рСО 2 и обеспечивают рефлекторную регуляцию уровней газов крови путем изменения частоты дыхания.

Хеморецепторы аортального гломуса (под дугой аорты) у человека относительно недоразвиты.


Дыхательный центр. Все срезы показаны снизу и сзади.
(А) - увеличенный срез (Б).
(А) Тормозное взаимодействие между дорсальным и вентральным дыхательными ядрами (ДДЯ, ВДЯ).
К хемочувствительной области (ХЧО) продолговатого мозга, волокна от которой направляются к ДДЯ, прилежат капилляры сосудистой оболочки, продуцирующие спинномозговую жидкость (СМЖ) (Б).
В составе языкоглоточного нерва (IX) проходят хемочувствительные волокна от каротидного синуса до ДДЯ.
(В) Возбуждение двигательных нейронов диафрагмы осуществляет противоположное ДДЯ.
(Г) Для форсированного выдоха ВДЯ противоположной стороны возбуждает нейроны мышц передней брюшной стенки.

в) Контроль сердечно-сосудистой системы . Сердечный выброс и периферическое сопротивление сосудов регулируют нервная и эндокринная системы. Вследствие широкого распространения эссенциальной артериальной гипертензии в позднем среднем возрасте большинство исследований в этой области направлено на изучение механизмов сердечно-сосудистой регуляции.

Восходящие волокна, сигнализирующие о повышенном артериальном давлении, начинаются от рецепторов растяжения (многочисленных свободных нервных окончаний) в стенке каротидного синуса и дуги аорты. Эти восходящие волокна, известные как барорецепторы, направляются к медиально расположенным клеткам ядра одиночного пути, образующим барорецепторный центр. Восходящие волокна от каротидного синуса проходят в составе языкоглоточного нерва; волокна от дуги аорты входят в состав блуждающего нерва. Барорецепторные нервы относят к «буферным нервам», так как их действие заключается в коррекции любых отклонений артериального давления от нормы.

Сердечный выброс и периферическое сопротивление сосудов зависят от активности симпатической и парасимпатической нервных систем. Два основных барорецепторных рефлекса - парасимпатический и симпатический - способствуют нормализации повышенного артериального давления.


:
(А) Верхний отдел продолговатого мозга.
(Б) Сегменты спинного мозга от Т1 до L3.
(В) Задняя стенка сердца. Барорецепторный рефлекс (слева):
1. Рецепторы растяжения в каротидном синусе возбуждают волокна синусовой ветви языкоглоточного нерва. ВСА-внутренняя сонная артерия.
2. Барорецепторные нейроны ядра одиночного пути отвечают возбуждением тормозящих сердце (кардиоингибирующих) нейронов дорсального (двигательного) ядра блуждающего нерва (ДЯ-Х).
3. Преганглионарные парасимпатические холинергические волокна блуждающего нерва образуют синапсы с клетками интрамуральных ганглиев в задней стенке сердца.
4. Постгангионарные парасимпатические холинергические волокна тормозят пейсмекерную активность синоатриального узла, уменьшая, тем самым, частоту сердечных сокращений.
Баросимпатический рефлекс (справа) :
1 Афферентные волокна рецепторов растяжения каротидного синуса возбуждают медиальные барорецепторные нейроны ядра одиночного пути.
2. Барорецепторные нейроны отвечают возбуждением тормозных нейронов депрессорного центра в центральном ретикулярном ядре продолговатого мозга.
3. Происходит торможение адренергических и норадренергических нейронов прессорного центра латерального ретикулярного ядра (переднего вентролатерального отдела продолговатого мозга).
4. Уменьшается тоническое возбуждение нейронов боковых рогов спинного мозга.
5 и 6. Происходит пре- и постганглионарное торможение симпатической иннервации тонуса артериол, что, в свою очередь, приводит к снижению периферического сосудистого сопротивления.

г) Сон и бодрствование . При электроэнцефалографии (ЭЭГ) можно наблюдать характерные картины электрической активности корковых нейронов при разных состояниях сознания. Нормальное состояние бодрствования характеризуется высокочастотными низкоамплитудными волнами. Погружение в сон сопровождается низкочастотными высокоамплитудными волнами, более высокая амплитуда волн обусловлена синхронизированной активностью большего числа нейронов. Такой тип сна называют медленноволновым (синхронизированным), или He-REM-сном (REM-rapid eye movement- быстрые движения глаз). Он продолжается около 60 мин, а затем переходит в десинхронизированный сон, при котором последовательности на ЭЭГ напоминают таковые при состоянии бодрствования. Только в этот период возникают сны и быстрые движения глаз (отсюда и более часто употребляемый термин - REM-сон). В период нормального ночного сна сменяют друг друга несколько циклов REM-сна и He-REM-сна, описанные в отдельной статье на сайте.

Смена циклов сна и бодрствования - отражение двух нейронных сетей мозга, одной - работающей в состоянии бодрствования, а другой - в состоянии сна. Эти сети проти вопоставлены друг другу по типу «переключателя» между сном и бодрствованием (что делает возможным переключение между сетями быстрым и полным). Аналогичная схема работает при смене REM-сна на медленноволновой сон. В норме управление сном происходит с помощью физиологических систем (вклад системы гомеостаза - изменение уровня метаболизма клеток), циркадных ритмов (супрахиазмальное ядро- главные биологические часы, которые синхронизированы с информацией от окружающей среды, воздействием света на сетчатку и мелатонином, вырабатываемым эпифизом, и управляют циклом сон-бодрствование и другими физиологическими функциями) и аллостатической нагрузки (принятие пищи и двигательная активность).

Эти факторы изменяются медленно, и без быстрой смены состояния переключательного механизма переход от бодрствования ко сну также был бы медленным и неудобным.

3. Стимуляция пробуждения, или активирующие системы (каудальный отдел среднего мозга и ростральный отдел моста). За активацию коры больших полушарий отвечают два основных пути:

Холинергические нейроны (ножкомостового и латеродорсальных ядер покрышки) подходят к таламусу (переключательным ядрам и ретикулярному ядру) и ингибируют те ГАМК-ергические нейроны таламуса, задача которых - препятствование передаче чувствительной информации к коре полушарий.

Моноаминергические нейроны расположены в голубом пятне, дорсальном и срединном ядрах шва (серотонинергические), парабрахиальном ядре (глутаматергические), околоводопроводном сером веществе (ОВСВ, дофаминергические) и в серобугорно-сосцевидном ядре (гистаминергические). Аксоны нейронов каждой из этих областей направляются к базальным отделам переднего мозга (базальному ядру Мейнерта и безымянной субстанции), а оттуда - к коре больших полушарий.

Пептидергические (орексиновые) и глутаматергические нейроны латерального гипоталамуса, а также холинергические и ГАМК-ергические нейроны базальных ганглиев переднего мозга также посылают волокна к коре больших полушарий.

Ретикулярная формация известна с 1845 г., описана Дейтерсом (O.F.C. Deiters) в 1885 г. В настоящее время продолжается ее изучение. Ретикулярная формация располагается между задними и боковыми рогами шейных сегментов спинного мозга, в покрышке мозгового ствола, в центральном ядре зрительного бугра. Представляет собой комплекс анатомически и функционально взаимосвязанных нейронов, окруженных множеством волокон, идущих в различных направлениях к ядерным структурам и проводящим путям (рис. 30).

Рис. 30. : 1 - восходящие пути; 2 - нисходящие пути; 3 - специфический (лемнисковый) чувствительный проводящий путь; 4 - пирамидальный путь.

Ретикулярная формация воспринимает все импульсы (болевые, температурные, световые, звуковые и пр.), однако в ней нет специализированных нейронов. Поэтому одни и те же нейроны воспринимают различные импульсы и передают их в различные отделы мозга, во все участки коры. Ретикулярная формация - это вторая афферентная система головного мозга, его неспецифическая структура . Она имеет двухсторонние связи со всеми структурами головного и спинного мозга (рис. 31, 32).

Рис. 31. : 1; 2; 3 - специфический (лемнисковый) чувствительный проводящий путь; 4 - коллатерали, соединяющие специфический чувствительный путь с ретикулярной формацией мозгового ствола; 5 - восходящая активирующая система ретикулярной формации; 6 - генерализованное влияние ретикулярной формации на кору головного мозга.

Рис. 32. : 1 - чувствительный нерв, на который наносится стимул (болевое раздражение); 2 - спинной мозг; 3 - симпатические нервы; 4 - надпочечник; 5 - каротидный синус; 6 - гипофиз; 7 - ретикулярная формация. Сплошными стрелками обозначены нервные влияния, пунктирными - гормональные влияния, которые через ретикулярную формацию оказывают активирующее воздействие на кору головного мозга.

Структурные элементы ретикулярной формации ствола мозга подразделяют на латеральный и медиальный отделы. В латеральном отделе заканчиваются волокна из различных афферентных систем. К рассеянным клеткам и ядрам ретикулярной формации подходят коллатерали от медиальной и латеральной петель, от чувствительных ядер черепных нервов. От нейронов медиального отдела начинаются эфферентные волокна к двигательным ядрам черепных нервов, к мозжечку, к двигательным ядрам передних рогов спинного мозга.

Основные афферентные пути ретикулярной формации: tr. spinoreticularis - от спинного мозга, tr. tegmentothalamicus - от среднего мозга, reticulothalamicus - от продолговатого мозга и моста, tr. thalamocorticalis - ко всем областям и слоям коры полушарий большого мозга. Сетевидная формация активизирует кору большого мозга и мозжечок.

Кора полушарий большого мозга, в свою очередь, посылает по tr. corticoreticularis импульсы в ретикулярную формацию в составе пирамидных путей. Основным эфферентным трактом является tr. reticulospinalis. Этот путь проводит тонические импульсы к гамма-мотонейронам спинного мозга. Ретикулярная формация регулирует моторное звено, обеспечивая координацию движений, синхронность мышечных сокращений, обеспечивает нестандартные движения, рефлекс равновесия, устанавливает антигравитационный тонус мускулатуры, удерживающий тело над землей. Ретикулярная формация перераспределяет мышечный тонус, что в кризисных ситуациях приводит к мобилизации скрытых резервов организма.

Установлена роль голубоватого пятна и ядер шва в регуляции сна и бодрствования. Голубоватое пятно (locus caeruleus ) находится в верхнелатеральной части ромбовидной ямки. Нейроны этого ядра продуцируют норадреналин, активирующий вышележащие отделы мозга. Особенно высока активность нейронов голубоватого пятна во время бодрствования, во время глубокого сна она угасает почти полностью.

Ядра шва (nuclei raphes ) располагаются по срединной линии продолговатого мозга. Нейроциты этих ядер вырабатывают серотонин, который вызывает процессы разлитого торможения и состояние сна.

Ядра ретикулярной формации продолговатого мозга имеют связи с вегетативными ядрами Ⅸ, Ⅹ нервов и симпатическими ядрами спинного мозга. Поэтому они участвуют в регуляции сердечной деятельности, дыхания, тонуса сосудов, секреции желез и так далее.

Ядра Кахаля и Даркшевича, относящиеся к ретикулярной формации среднего мозга, к медиальному продольному пучку (fasciculus longitudinalis medialis ), имеют связи с ядрами третьей, четвертой, шестой, восьмой, девятой, десятой и одиннадцатой парой черепных нервов. Они координируют работу этого пучка, обеспечивая сочетанные повороты головы и глаз при изменении позы или при поиске источника звука, фиксацию взгляда. (Данные движения совершенно необходимы при трудовых и игровых актах).

Эти связи объясняют вегетативные нарушения при вестибулярных перегрузках. Рассеянные нейроны ретикулярной формации выступают в качестве вставочных нейронов охранительных рефлексов глотательного, роговичного (рис. 33), кашлевого рвоты, зевоты, чихания и др.

Рис. 33. : 1 - рецепторы, расположенные в роговице; 2 - глазная ветвь тройничного нерва; 3 - ложноуниполярная клетка чувствительного узла тройничного нерва; 4 - ассоциативный нейрон - рассеянная клетка ретикулярной формации; 5 - клетка двигательного ядра лицевого нерва; 6 - круговая мышца глаза.

Ретикулярная формация (лат. rete - сеть) представляет собой совокупность клеток, клеточных скоплений и нервных волокон, расположенных на всем протяжении ствола мозга (продолговатый мозг, мост, средний и промежуточный мозг) и в центральных отделах спинного мозга. Ретикулярная формация получает информацию от всех органов чувств, внутренних и других органов, оценивает ее, фильтрует и передает в лимбическую систему и кору большого мозга. Она регулирует уровень возбудимости и тонуса различных отделов центральной нервной системы, включая кору большого мозга, играет важную роль в сознании, мышлении, памяти, восприятии, эмоциях, сне, бодрствовании, вегетативных функциях, целенаправленных движениях, а также в механизмах формирования целостных реакций организма. Ретикулярная формация прежде всего выполняет функцию фильтра, который позволяет важным для организма сенсорным сигналам активировать кору мозга, но не пропускает привычные для него или повторяющиеся сигналы.

Ретикулярная формация представляет собой важный пункт на пути восходящей неспецифической соматосенсорной системы. Соматовисцеральные афференты идут в составе спиноретикулярного тракта (переднебоковой канатик), а также, возможно, в составе проприоспинальных (полисинаптических) путей и соответствующих путей от ядра спинального тройничного тракта. К ретикулярной формации приходят также пути от всех других афферентных черепномозговых нервов, т.е. практически от всех органов чувств. Дополнительная афферентация поступает от многих других отделов головного мозга - от моторных областей коры и сенсорных областей коры, от таламуса и гипоталамуса. Имеется также множество эфферентных связей - нисходящие к спинному мозгу и восходящие через неспецифические таламические ядра к коре головного мозга, гипоталамусу и лимбической системе. Большинство нейронов образует синапсы с двумя - тремя афферентами разного происхождения, такая полисенсорная конвергенция характерна для нейронов ретикулярной формации. Другими их свойствами являются большие рецептивные поля поверхности тела, часто билатеральные, длительный латентный период ответа на периферическую стимуляцию (вследствие мультисинаптического проведения), слабая воспроизводимость реакции (стохастические колебания числа потенциалов действия при повторной стимуляции). Все эти свойства противоположны свойствам лемнисковых нейронов в специфических ядрах соматосенсорной системы (рис.9-7 и рис. 5-13).

Функции ретикулярной формации изучены не полностью. Считается, что она участвует в следующих процессах:

1. в регуляции уровня сознания путем воздействия на активность корковых нейронов, например, участие в цикле сон / бодрствование,

2. в придании аффективно-эмоциональной окраски сенсорным стимулам, в том числе болевым сигналам, идущим по переднебоковому канатику, путем проведения афферентной информации к лимбической системе,

3. в вегетативных регулирующих функциях, в том числе во многих жизненно важных рефлексах (циркуляторных рефлексах и дыхательных рефлексах, рефлекторных актах глотания, кашля, чихания), при которых должны взаимно координироваться разные афферентные и эфферентные системы,

4. в целенаправленных движениях в качестве важного компонента двигательных центров ствола мозга.

Вопрс48. Сравнительная характеристика кабельного и сальтаторного видов проведения возбуждения

Нервная ткань обладает таким физиологическим свойством как проводимость, т. е. способностью проводить возбуждение по ходу нервного волокна в виде потенциала действия. Выделяют два вида проведения возбуждения в зависимости от строения нервного волокна. Различают два вида нервных волокон: мякотные (миелиновые) и безмякотные (немиелиновые). В безмякотных нервных волокнах наблюдается непрерывное распространение возбуждения, в основе которого лежат локальные или круговые токи. Как было сказано раньше, возбужденный электроотрицательный участок нервного волокна становится раздражителем для ближайшего невозбужденного электроположительного участка, который возбуждается (возбужденный участок как бы разряжается в сторону невозбужденного, следствием чего и являются появление локальных или круговых токов).

Миелин, прокрывающий нервное волокно, располагается сегментами, т. е. прерывисто. Миелин - хороший изолятор и, если бы он сплошным слоем покрывал нервное волокно, то возбуждение не распространялось бы. Миелиновая оболочка образуется клетками неврилеммы или шванновскими клетками. Плазматическая мембрана одной шванновской клетки обвертывает спирально в несколько слоев участок аксона, длиной в несколько сотых микрон. Между участками аксона, покрытого миелиновой оболочкой, остаются немиеленизированные зоны. Эти зоны называются перехватами Ранвье.

В волокнах, покрытых миелиновой оболочкой (мякотные волокна) возбуждение распространяется скачкообразно (сальтаторно), т. е. по перехватам Ранвье. Как было показано японским физиологом Тасаки, это создает своеобразную систему надежности для распространения возбуждения (разности потенциалов между возбужденным и невозбужденным участками волокна хватает на 5-6 перехватов Ранвье). В случае, если появится повреждение на небольшом участке волокна вследствие большого электрического поля распространение потенциала действия не нарушается. Как известно, начальная часть аксона в нервной клетке не покрыта миелиновой оболочкой. Именно в этом участке волокна и формируется потенциал действия. Возникает разность потенциалов между возбужденным и невозбужденным участком первого перехвата Ранвье, который под влиянием этого электрического поля возбуждается. Затем разность потенциалов формируется между возбужденным первым перехватом Ранвье и следующим, который перезаряжается и возбуждение приобретает распространяющий характер. Таким образом, в основе распространения возбуждения по мякотному волокну, как и безмякотному, лежат также местные (круговые, вихревые) токи. В перехватах Ранвье, находящихся друг от друга на расстоянии 2 мм, обнаружена большая плотность натриевых каналов - до 1200 на 1 мкм2, что значительно облегчает проведение возбуждения по нервному волокну. Прерывистое распространение возбуждения имеет некоторые преимущества по сравнению с непрерывным. Во-первых, скорость распространения возбуждения в волокнах, покрытых миелином, в 8-10 раз быстрее, чем в безмякотных. Во-вторых, на распространение возбуждения прерывистого типа затрачивается меньше энергии, оно более экономично, что, по всей вероятности, связано с большой плотностью натриевых каналов в перехватах Ранвье.

При распространении возбуждения по нервному волокну следует учитывать чисто физические или кабельные свойства проводника (нерв можно представить как кабель, помещенный в морскую воду). К кабельным свойствам относится, в частности, диаметр (поперечное сечение) проводника - чем толще нервное волокно (или больше поперечное сечение), тем меньше сопротивление. Следовательно, тем быстрее будет распространение возбуждения в виде импульса. Большое значение при возбуждении имеет также емкость и сопротивление мембраны. Так, если входное сопротивление мембраны больше, то и возбудимость в этом месте уменьшается. К кабельным свойствам относится также и электротон, оказывающий большое влияние на проводимость: чем выраженнее катэлектротон, тем быстрее проводится потенциал действия. Анэлектротонические изменения, напротив, ухудшают проведение возбуждения по нервной ткани.

В зависимости от скорости проведения возбуждения все нервные волокна делятся на три группы: А, В и С. Нервные волокна группы А - это высокоскоростные волокна, исключительно мякотного типа. В зависти от сечения нервного волокна скорость проведения возбуждения их колеблется в пределах 20-120 м/с. Различают А- волокна - самые скоростные - 70-120 м/с (диаметр волокна 12-20 мкм - a-волокна, их средняя скорость проведения возбуждения составляет 70-120 м/с; диаметр 8-12 мкм - b-волокна, проводящие возбуждение со скоростью 40-70 м/с; диаметр волокна 4-8 мкм - g-волокна, проводящие возбуждение со скоростью 20-40 м/с). Таким образом, чем толще проводник, тем больше скорость проведения возбуждения. Нервные волокна группы В представляют собой в основном безмякотные волокна, скорость распространения возбуждения которых составляет 6-20 м/с. Нервные волокна группы С представлены исключительно безмякотными волокнами вегетативной природы, скорость проведения возбуждения их составляет 0,5-6 м/с.

В физиологии имеется три закона распространения возбуждения.

Закон целостности нерва (закон непрерывности). Нерв проводит возбуждение только в том случае, если он сохраняет свою гистологическую и функциональную целостность. Любые отклонения этих показателей приводят к нарушению его проводимости. Действие местных анестетиков (новокаин) основано на том, что молекулы новокаина блокируют натриевые каналы, в результате чего прекращается натриевый ток и ткань теряет способность возбуждаться. Возбуждение при раздражении болевых рецепторов доходит до места, где действует новокаин и блокируется, вследствие чего болевые импульсы не достигают болевого центра.

Закон двустороннего проведения возбуждения. Нервное волокно способно проводить возбуждение от рецепторов к центрам и наоборот, от центров к периферическим образованиям. Такая закономерность была показана в классических исследования Кюне и Бабухина. Так, опыт Кюне заключался в следующем: если нарушить целостность мышцы между двумя ее участками, которые иннервируются двумя разветвлениями одного аксона, то электрическое раздражение любого из ответвлений аксона приводит к сокращению обеих частей мышцы.

Закон изолированного распространения возбуждения. Известно, что потенциал действия в волокнах, покрытых миелином, не перебрасывается с одного нервного волокна на другое благодаря хорошим изоляционным свойствам миелина. Такое изолированное проведение возбуждения обеспечивает мелкие и точные профессиональные сокращения мышц (игра на пианино, работа часового мастера и др.). Сразу после рождения достаточная миелинизация нервных волокон отсутствует и на любое раздражение новорожденные в большинстве случаев отвечают не локальными, а диффузными сокращениями большой группы мышц. Подобная же ответная реакция наблюдается во всех гладких мышцах, которые иннервируются безмякотными нервными волокнами, не обладающими изоляционнымитсвойствами.

Поделитесь с друзьями или сохраните для себя:

Загрузка...