Необходимость кислородного обеспечения организма. Динамика потребления кислорода человеком в покое и при работе Кислород роль в организме


А. М. Чарный,


"Патофизиология гипоксических состояний".
Медгиз, М., 1961 г.

Публикуется с небольшими сокращениями.

Важность кислорода для сохранения жизни организма бесспорна. Если сравнить между собой существенно необходимые для жизни организма ингредиенты - воду, питательные вещества и кислород, то окажется, что расстройство кислородного бюджета в каком-либо из звеньев наиболее быстро приводит к смерти. В организме человека, как наиболее высоко организованной форме жизни, функциональная способность жизненно важных органов существенно зависит от непосредственного снабжения их кислородом. Поэтому можно предполагать, что любое патологическое состояние тесно связано с нарушениями в кислородном бюджете организма.


Понятие «кислородный бюджет» включает весь комплекс вопросов, касающихся потребности организма в кислороде, законов проникновения кислорода в клетки и жидкости организма, транспорта его через кровеносную систему и механизма его использования в тканях. Между потреблением кислорода и выработкой энергии в организме были установлены определенные количественные соотношения. Энергетической основой жизнедеятельности организма является постоянное окисление пищевых веществ. В условиях белкового питания при потреблении 1 л кислорода образуется 4,48 ккал, при питании жиром - 4,69 ккал, при исключительно углеводной пище - 5,05 ккал тепла. Потребление 1 л кислорода в условиях смешанного питания сопровождается образованием 4,8 ккал тепла.
... Таким образом, человек в покое при минимальном газообмене потребляет около 250 мл кислорода в минуту. В то же время образуется около 200 мл углекислоты. При тяжелой мышечной работе потребление кислорода увеличивается в 10 и более раз, что составляет примерно 2500-3000 мл кислорода в минуту. Это положение подтверждается данными, полученными при изучении отдельных органов в покое и при напряженной деятельности.
... При напряженной деятельности потребление кислорода значительно возрастает.
Запасы кислорода в организме человека крайне невелики; их может хватить для жизнедеятельности на 5-6 минут.
... По вычислениям Баркрофта, количество крови у кита составляет приблизительно 8000 л при общем весе его 122 000 кг. Отсюда следует, что количественные соотношения между весом тела и объемом крови у кита приблизительно того же порядка, что и у человека. Те же соотношения существуют в организме других ныряющих животных (тюлень). Сопоставление запасов кислорода в организме человека и ныряющих животных дает ясную картину незначительности этого запаса у человека и ныряющих животных. Длительное пребывание ныряющих животных под водой без доступа атмосферного кислорода и при малых запасах его в организме оказывается возможным благодаря низкой интенсивности обмена веществ. Весьма малые запасы кислорода у человека полностью удовлетворяют его физиологические потребности при условии постоянного пополнения этого запаса из внешнего воздуха . Это достигается регуляцией снабжения организма кислородом и удалением углекислоты, которая осуществляется автоматически и при больших скоростях. Условия для этого, надо полагать, были созданы на определенной стадии развития организма и являлись причиной того, что жизненно необходимый для организма газ стал легко абсорбироваться кровью и быстро отдаваться тканям. Этими условиями являются: физические свойства и законы проникновения кислорода в клетки и жидкости организма, транспорт кислорода через кровеносную систему и механизм использования кислорода в тканях.

ОСНОВНЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА КИСЛОРОДА И ЗАКОНЫ ПРОНИКНОВЕНИЯ ЕГО В ЖИДКИЕ СРЕДЫ ОРГАНИЗМА

В крови и тканях организма имеется около 20 л углекислого газа, 1 л кислорода и 1 л азота. По закону Дальтона давление газа в смеси не зависит от содержания других компонентов в смеси и равно тому давлению, которое оказывало бы это количество газа , если бы оно одно занимало данный объем. Это давление называется парциальным давлением газа.
Парциальное давление кислорода в клетках, крови и жидкостях организма является важным фактором, обусловливающим его нормальную жизнедеятельность. Парциальное давление кислорода в клетках представляет собой внутриклеточное газовое давление, а в тканевой жидкости и лимфе - внеклеточное. Кемлбелл методом образования газового пузыря показал, что при любом объеме данного газа в ограниченной полости после выравнивания в условиях покоя парциальное его давление остается постоянным. Снабжение организма кислородом обеспечивается дыхательной системой, кровью и тканями. Что касается дыхательной системы, то здесь поступление кислорода подчинено законам проникновения газов через мембраны и диффузии их в жидкости.

ДИФФУЗИЯ КИСЛОРОДА ЧЕРЕЗ ЛЕГОЧНУЮ МЕМБРАНУ

Существенным фактором для газообмена между кровью и воздухом является величина дыхательной поверхности и толщина тканевого слоя между легочными капиллярами и альвеолами.


Еще Эбби (1880) указал, что дыхательная поверхность легких составляет 80 м2 при поперечнике спавшихся альвеол 0,2 мм.
Величина дыхательной поверхности легких, приводимая Цунтцем при учете им содержания воздуха в легочных альвеолах , диаметра альвеолы (0,2 мм) и ее поверхности (0,126 см2) при условии, что в легких человека находится около 725 млн. альвеол, составляет 90 м2.
Бор иначе подошел к расчету легочной поверхности. То количество газа, которое при давлении 760 мм ртутного столба проникает в 1 минуту через 1 см2 поверхности, он обозначил как инвазионный коэффициент.
... Толщина стенки, отделяющей полость альвеолы от полости капилляра, по согласованным данным многочисленных исследователей, составляет 0,004 мм. В дальнейшем оказалось, что для диффузии газов имеет значение абсорбция газов жидкостью, молекулярный вес, масса отдельных газовых молекул, давление на пограничных слоях жидкости, толщина слоя жидкости и т. п.
Количество газа, абсорбируемое единицей объема жидкости при атмосферном давлении, носит название абсорбционного коэффициента Бунзена (а). Стефан ввел понятие диффузионного коэффициента (К) - константы, зависящей от природы диффундирующего газа, жидкости и температуры.
... Таким образом, скорость диффузии газа прямо пропорциональна абсорбционному коэффициенту, различию давления диффундирующего газа по обе стороны жидкости, константе диффузии и обратно пропорциональна барометрическому давлению и толщине перегородки. Леви и Цунтц предложили вместо диффузионного коэффициента учитывать диффузионный фактор (С). Последний (на том основании, что диффузионный коэффициент пропорционален квадратному корню из молекулярного веса) выводится из диффузионного коэффициента при умножении на квадратный корень из молекулярного веса газа.
... В дальнейшем опыты Леви и Цунтца показали, что диффузия через легочную ткань происходит в 2 раза быстрее, чем через воду. Экснер объясняет это наличием липоидной мембраны. Таким образом, оказалось, что диффузионный фактор для легких будет составлять 0,139 вместо 0,065 для воды.
На основании имеющихся данных можно рассчитать, сколько кислорода может проникнуть в минуту при нормальных дыхательных движениях через 1 см2 альвеолярной стенки и, следовательно, через нормальные легкие человека.
... Через всю легочную поверхность (90 м2) за минуту проникает 90 X 10000 X 0,006756 = 6080 мл кислорода. Таким образом, структура легких обеспечивает возможность проникновения в кровь около 6080 мл кислорода в минуту. Учитывая, что потребление кислорода взрослым человеком в покое составляет 250 мл в минуту, а при напряженной мышечной работе около 3000-4000 мл, можно сделать вывод, что снабжение организма кислородом обеспечивается легкими в избытке.
Эти данные позволяют заключить, что самая напряженная работа может быть обеспечена соответствующей доставкой кислорода и что при патологических условиях, связанных с выключением большой доли легочной поверхности из

Открытие кислорода произошло дважды, во второй половине XVIII столетия с разницей в несколько лет. В 1771 году кислород получил швед Карл Шееле, нагревая селитру и серную кислоту. Полученный газ был назван «огненным воздухом». В 1774 английский химик Джозеф Пристли проводил процесс разложения оксида ртути в полностью закрытом сосуде и открыл кислород, но принял его за ингредиент воздуха. Только после того, как Пристли поделился своей находкой с французом Антуаном Лавуазье, стало понятно, что открыт новый элемент (calorizator). Пальма первенства данного открытия принадлежит Пристли потому, что Шееле опубликовал свой научный труд с описанием открытия лишь в 1777 году.

Кислород является элементом XVI группы II периода периодической системы химических элементов Д.И. Менделеева, имеет атомный номер 8 и атомную массу 15,9994. Принято обозначать кислород символом О (от латинского Oxygenium - порождающий кислоту). В русском языке название кислород стало производным от кислоты , термина, который был введён М.В. Ломоносовым.

Нахождение в природе

Кислород является самым распространённым элементом по нахождению в земной коре и Мировом океане. Соединения кислорода (в основном - силикаты) составляют не менее 47% массы земной коры, кислород вырабатывается в процессе фотосинтеза лесами и всеми зелёными растениями, большая часть приходится на фитопланктон морских и пресных вод. Кислород - обязательная составная часть любых живых клеток, также находится в большинстве веществ органического происхождения.

Физические и химические свойства

Кислород - лёгкий неметалл, состоит в группе халькогенов, имеет высокую химическую активность. Кислород, как простое вещество, представляет собой газ без цвета, запаха и вкуса, имеет жидкое состояние - светло-голубая прозрачная жидкость и твёрдое - светло-синие кристаллы. Состоит из двух атомов кислорода (обозначается формулой О₂).

Кислород участвует в окислительно-восстановительных реакциях. Живые существа дышат кислородом воздуха. Широко используется кислород в медицине. При сердечнососудистых заболеваниях, для улучшения обменных процессов, в желудок вводят кислородную пену («кислородный коктейль»). Подкожное введение кислорода используют при трофических язвах, слоновости, гангрене. Для обеззараживания и дезодорации воздуха и очистки питьевой воды применяют искусственное обогащение озоном.

Кислород - основа основ жизнедеятельности всех живых организмов на Земле, является основным биогенным элементом. Находится в составе молекул всех важнейших веществ, которые отвечают за структуру и функции клеток (липиды, белки, углеводы, нуклеиновые кислоты). Каждый живой организм содержит гораздо больше кислорода, чем какого-либо элемента (до 70%). Для примера, организм взрослого среднестатического человека массой 70 кг содержит 43 кг кислорода.

Кислород поступает в живые организмы (растения, животные и человек) благодаря органам дыхания и поступлению воды. Помня о том, что в организме человека самый главный орган дыхания - это кожа, становится понятно, сколько кислорода может получать человек, особенно летом на берегу водоёма. Определить потребность человека в кислороде достаточно сложно, ведь она зависит от многих факторов - возраст, пол, масса и поверхность тела, система питания, внешняя среда и т.д.

Применение кислорода в жизни

Кислород применяется практически повсеместно - от металлургии до производства ракетного топлива и взрывчатых веществ, применяемых для дорожных работах в горах; от медицины до пищевой промышленности.

В пищевой промышленности кислород зарегистрирован в качестве пищевой добавки , как пропеллент и упаковочный газ.

О том, что воздух, которым мы дышим, не однороден по своему составу, знали еще китайские алхимики в VIII веке. Уже в те времена было известно, что есть активная часть воздуха, которая содержит элемент, поддерживающий жизнь, способствующий дыханию и горению, именуемый кислородом, и его неактивная часть в виде особенного газа, который наши современники называют азотом.

Сегодня каждый школьник знает о том, что кислород – самый распространенный газ на Земле. Он есть везде: в земной коре, морской и пресной воде, в атмосфере. И главное, кислород входит в состав молекул важнейших веществ, обеспечивающих нашу с вами жизнь: белков, углеводов, жиров, нуклеиновых кислот. Разумеется, не как газ из атмосферы, а как химический элемент, на основе которого образованы самые сложные химические соединения.

Конечно, главные в этой цепочке – нуклеиновые кислоты – РНК и ДНК. Это биополимерные молекулы, хранящие всю информацию о каждом отдельном живом организме, определяющие его рост и развитие, а также наследственные признаки, передаваемые следующему поколению. А кислород в них играет роль связующего и стабилизирующего звена, так как именно он соединяет между собой составные части нуклеиновых кислот. В каждом растении или животном кислорода гораздо больше, чем любого другого элемента.

Сколько кислорода потребляет организм?

Вы никогда не задумывались, сколько кислорода необходимо человеку? Существует специальный показатель, который дает представление о максимальном поглощении кислорода организмом в единицу времени (МПК), его величина зависит от нагрузки и физических данных каждого из нас. При максимальной нагрузке величина МПК может составить от 3 до 6 литров в минуту. Это так называемый абсолютный МПК. То есть именно столько кислорода в среднем поглощает житель планеты в минуту. Но тела у всех разные, и этим объясняется значительное различие между данными цифрами. Впрочем, разнятся и показатели содержания кислорода в отдельных системах организма.

К примеру, мышечная ткань человека содержит около 16 % кислорода. Да это и понятно, ведь в мышцах происходит газообмен между тканями и кровью, так же как и обмен питательными веществами и продуктами их распада. В мышцы поступает кровь, обогащенная кислородом, а отводится – насыщенная углекислым газом. Этим же путем попадают в мышцы углеводы и аминокислоты, а выводятся молочная кислота и другие продукты обмена.

Костная ткань на 28,5 % состоит из кислорода. Почему так много? Потому что в костной ткани целый набор химических элементов: основное неорганическое вещество – ортофосфат кальция Са 3 (РО4) 2 – содержит кислорода намного больше, чем кальция и фосфора, это видно даже из формулы. Как и во всех других клетках, в костной ткани есть вода (Н 2 О), а это опять же кислород. Ну и, конечно, в костях содержатся органические вещества: белки (например, оссеин), липиды, углеводы, АТФ, нуклеиновые кислоты – в их составе обязательны углерод, водород, азот, фосфор и, конечно же, кислород!

Благодаря наличию кислорода организм человека способен фактически «сжигать» лишние белки, жиры, углеводы с извлечением определенной энергии сгорания для собственных нужд. Считается, что всего в организме среднего человека с массой тела около 70 кг содержится до 43 кг кислорода! Эта цифра приблизительна и напрямую зависит от интенсивности обмена веществ, массы тела, возраста, пола, климата и даже характера питания.

Основным источником кислорода для человека является атмосфера Земли, из которой в ходе дыхания наш организм способен извлекать необходимое для жизни количество этого газа.

Кислород – безусловное благо?

На первый взгляд похоже, что это действительно так. Достаточно вспомнить, что тяжело больным людям значительно облегчает страдания знакомая всем обыкновенная «кислородная подушка». Однако не все так просто. У кислорода есть свои плюсы и минусы.

Длительное вдыхание воздуха с высоким содержанием кислорода опасно для здоровья человека, так как вызывает образование в тканях так называемых свободных радикалов, нарушающих биологический баланс организма. Свободные радикалы разрушительны по своей сути. Их действие на организм по своей агрессивности сродни ионизирующему излучению. Именно эта характеристика кислорода используется в лучевой терапии: повышая содержание кислорода в опухоли и снижая его содержание в окружающих тканях, онкологи усиливают лучевое поражение опухолевых клеток и уменьшают повреждение здоровых.

Но раз существует такая тесная взаимосвязь между кислородом и опухолевыми клетками, не может ли сам кислород быть причиной развития рака? Ответ на этот вопрос искали многие ученые. Больше всего преуспел в подобных исследованиях немецкий биохимик и физиолог, лауреат Нобелевской премии Отто Варбург. Еще в начале 30-х годов прошлого столетия он сделал вывод: «Рак, в отличие от других заболеваний, имеет бесчисленное множество вторичных причин возникновения. Но даже для рака есть всего одна основная причина. Грубо говоря, основная причина рака – это замена дыхания с использованием кислорода в теле нормальной клетки на другой тип энергетики – ферментацию глюкозы». Иными словами, одной из основных причин возникновения раковых опухолей является нарушенное питание, вызывающее кислородное голодание, или гипоксию клеток.

Судите сами. Каждая из триллионов клеток нашего организма получает пищу и кислород из межклеточной жидкости, которая ее окружает. В свою очередь, эта межклеточная жидкость состоит из тех веществ, которые мы получаем с пищей, переваривая и усваивая продукты питания. В норме межклеточная жидкость имеет слабощелочную реакцию, что строго необходимо для нашей крови. Если же межклеточная жидкость закисляется токсинами из употребляемой нами пищи, то есть ее рН становится меньше 7, клетка начинает голодать, недополучая норму питательных веществ и кислорода. И что же ей остается делать, для того чтобы выжить? Вот тогда-то она и начинает перерождаться, чтобы приспособиться к изменившемуся режиму питания. Так зарождается и развивается опухоль. Обычно этот процесс занимает годы. Поэтому профилактика онкологических заболеваний заключается в своевременном установлении оптимального биобаланса кислорода в организме человека, напрямую связанного с характером нашего питания.

Профилактика рака

Совсем недавно исследователи из Университета Пенсильвании еще раз доказали, что свободные радикалы, образующиеся в организме в ходе окислительно-восстановительных реакций, могут вызывать повреждение клеточных структур и ДНК, что, в свою очередь, способно спровоцировать развитие рака легких. При этом существует прямая связь между высотой проживания человека над уровнем моря и заболеваемостью раком легких. Согласно данным статистики, чем выше над уровнем моря находится место жительства человека, тем ниже вероятность столкнуться с раком легких. Это объясняется тем, что на большой высоте значительно меньшее содержание кислорода в воздухе.

Таким образом, хотя кислород и абсолютно необходим человеку для жизни, его роль в организме человека далеко не однозначна. А что это значит на практике? Только одно. У человека есть только один способ скорректировать ситуацию – кардинально изменить свой рацион питания! Раковым клеткам необходима молочная кислота, которая образуется в результате «сжигания» организмом человека сахаров, поступающих с пищей? Значит, отказ от сахара и углеводов – верный путь профилактики рака. Конечно, все хорошо в меру. Поэтому не стоит бросаться в крайности. Менять свой рацион надо постепенно и всегда под наблюдением врача.

Рак – это болезнь цивилизации. И хотя, как показывают ископаемые останки, рак встречался среди ящеров и древних людей, сегодня раковые заболевания приобрели характер эпидемии. Одна из причин – изменение пищевых пристрастий человека. Интересно, что представители северных народов, чье питание традиционно состояло из мяса и рыбы, до знакомства с западной цивилизацией от рака не умирали. Может быть, пришло время всерьез подумать об этом? Я не призываю вас объявить бойкот сладостям, но снизить их количество в рационе до разумных пределов, по моему глубокому убеждению, обязан каждый современный цивилизованный человек.

Количество кислорода, потребленного человеком натощак в состоянии мышечного покоя, лежа, является показателем обмена, необходимого для поддержания жизненно важных функций организма в покое, т. е. основного обмена. Основной обмен человека характеризуется потреблением кислорода в пределах 200-250 мл/мин с энергетической затратой примерно 1-1,2 ккал/мин. На основной обмен оказывают влияние пол, возраст, вес и поверхность тела, состав пищи, климатические условия, температура окружающей среды и др. За норму энергетического основного обмена взрослого человека принята 1 ккал на 1 кг веса в час.

Повышенное потребление кислорода при работе необходимо для окисления продуктов распада углеводов в аэробной фазе (молочной кислоты), жиров, а также для ресинтеза азотсодержащих веществ в анаэробной фазе. Потребность организма в кислороде тем больше, чем напряженнее работа. В определенных пределах существует линейная зависимость между тяжестью выполняемой работы и потреблением кислорода. Это соответствие обеспечивается усилением работы сердечно-сосудистой системы и увеличением коэффициента диффузии кислорода через ткань легких. Коэффициент диффузии увеличивается от 50 при работе мощностью 450 кг/мин до 61 при работе мощностью 1590 кг/мин.

Количество кислорода в минуту, необходимое для полного окисления продуктов распада, носит название кислородного запроса, или кислородной потребности, максимальное же количество кислорода, которое организм может получить в минуту, носит название кислородного потолка. Кислородный потолок у нетренированных к физической работе людей составляет примерно 3 л/мин, а у тренированных может достигать 4-5 л/мин.

Энергетические затраты при динамической отрицательной работе составляют примерно 50% энергетических затрат при динамической положительной работе. Так, передвижение груза по горизонтальной плоскости в 9-16 раз легче, чем подъем груза.

Рис. 1. Динамика потребления кислорода при физической работе. Штриховка в клетку - потребление кислорода во время работы; горизонтальная штриховка - кислородный запрос; вертикальная штриховка - кислородный долг. Рисунок слева - работа средней тяжести; рисунок справа - работа с прогрессирующей кислородной задолженностью.

Потребление кислорода при динамической положительной работе показано на рис. 1. Как видно из этого рисунка, кривая потребления кислорода в начале работы растет и только через 2-3 минуты устанавливается на определенном уровне, который затем удерживается длительное время (устойчивое состояние). Сущность такого хода кривой в том, что вначале работа производится при неполном удовлетворении кислородного запроса и вследствие этого - при нарастающем кислородном долге, так как энергетические процессы в мышце при сокращении ее происходят мгновенно, а доставка кислорода вследствие инертности сердечно-сосудистой и дыхательной систем - медленно. И лишь тогда, когда доставка кислорода соответствует полностью кислородной потребности, наступает устойчивое состояние потребления кислорода.

Кислородный долг, образовавшийся в начале работы, погашается уже после прекращения работы, в период восстановления, во время которого потребление кислорода достигает исходного уровня. Такова динамика потребления кислорода при работе легкой и средней тяжести. При тяжелой работе устойчивое состояние потребления кислорода по существу никогда не наступает, к дефициту кислорода в начале работы присоединяется дефицит кислорода, образовавшийся во время нее. В этом случае потребление кислорода все время растет вплоть до кислородного потолка. Восстановительный период при такой работе значительно удлиняется. В случае, когда кислородный запрос при работе превышает кислородный потолок, наступает так называемое ложное устойчивое состояние. Оно отражает кислородный потолок, а не истинную потребность в кислороде. Восстановительный период при этом оказывается еще более длительным.

Таким образом, по уровню потребления кислорода в связи с работой можно судить о тяжести выполняемой работы. Устойчивое состояние потребления кислорода во время работы может указывать на то, что кислородный запрос полностью удовлетворяется, что накопление молочной кислоты в мышцах и крови не происходит, что она успевает ресинтезироваться в гликоген. Отсутствие же устойчивого состояния и рост потребления кислорода во время работы свидетельствуют о тяжести работы, о накоплении молочной кислоты, требующей кислорода для своего ресинтеза. Еще более тяжелая работа характеризуется ложным устойчивым состоянием.

Длительность периода восстановления потребления кислорода также указывает на большую или меньшую тяжесть работы. При легкой работе кислородная задолженность небольшая. Образовавшаяся молочная кислота в большей своей части успевает ресинтезироваться в мышцах в гликоген во время работы, длительность восстановительного периода не превышает нескольких минут. После тяжелой работы потребление кислорода падает сначала быстро, а затем очень медленно, общая длительность восстановительного периода может доходить до -30 минут и более.

Восстановление потребления кислорода не означает восстановления нарушенных функций организма в целом. Многие функции организма, например состояние дыхательной и сердечно-сосудистой систем, дыхательный коэффициент, биохимические процессы и др., к этому времени еще не достигают исходного уровня.

Для анализа газообменных процессов определенный интерес могут представить изменения дыхательного коэффициента CO 2 /O 2 (ДК).

При устойчивом состоянии потребления кислорода во время работы ДК может указывать на характер окисляемых веществ. При тяжелой работе ДК повышается до 1, что указывает на окисление углеводов. После работы ДК может быть больше 1, что объясняется нарушением кислотно-щелочного равновесия крови и повышением концентрации водородных ионов (рН): повышенная рН продолжает возбуждать дыхательный центр и вследствие этого углекислота усиленно вымывается из крови при одновременном падении потребления кислорода, т. е. в отношении CO 2 /O 2 числитель увеличивается, а знаменатель уменьшается.

В более поздней стадии восстановления ДК может быть ниже исходного дорабочего показателя. Объясняется это тем, что в восстановительном периоде освобождаются щелочные резервы крови, и для поддержания нормальной рН задерживается углекислота.

При статической работе потребление кислорода носит иной характер. В трудовом процессе наиболее конкретным выражением статической работы является поддержание рабочей позы человека. Рабочая поза как состояние равновесия тела может осуществляться в порядке активного противодействия внешним силам; при этом возникает длительное тетаническое напряжение мышц. Этот вид статической работы весьма неэкономен в иннервационном и энергетическом отношениях. Рабочая же поза, при которой поддержание равновесия происходит путем приспособления к направлению силы тяжести, значительно более экономна, так как при этом отмечается тоническое, а не тетаническое напряжение мышцы. В практике наблюдаются оба вида статической работы, нередко сменяющие друг друга, но основное значение с точки зрения физиологии труда имеет статическая работа, сопровождающаяся тетаническим напряжением. Динамика потребления кислорода при таком виде статической работы показана на рис. 2.

Из схемы видно, что во время статического напряжения потребление кислорода значительно меньше, чем кислородный запрос, т. е. мышца работает почти в анаэробных условиях. В период, непосредственно следующий за работой, потребление кислорода резко возрастает, а затем постепенно падает (феномен Лингарда), причем период восстановления может быть длительным, так почти вся потребность в кислороде удовлетворяется после работы. Лингард дал следующее объяснение открытому им феномену. При тетаническом «сокращении мышцы вследствие сжатия сосудов создается механическое препятствие кровотоку и тем самым доставке кислорода и оттоку продуктов распада - молочной кислоты. Статическая работа анаэробна, следовательно, характерный скачок в сторону повышения потребления кислорода после работы обусловлен потребностью окисления продуктов распада, образовавшихся при работе.

Это объяснение не является исчерпывающим. На основании учения Н. Е. Введенского низкое потребление кислорода при статической работе может быть обусловлено не столько механическим фактором, сколько снижением обмена вследствие прессорно-рефлекторных влияний, механизм которых заключается в следующем. В результате статического напряжения (непрерывные импульсы с мышцы) определенные клетки коры головного мозга приходят в состояние сильного длительного возбуждения, приводящего в конечном итоге к тормозным явлениям типа парабиотического блока. После прекращения статической работы (пессимального состояния) наступает период экзальтации - повышенной возбудимости и как следствие - повышение обмена. Состояние повышенной возбудимости распространяется на дыхательный и сердечно-сосудистый центры. Описанный вид статической работы малоэнергоемкий, потребление кислорода, даже при очень значительном статическом напряжении, редко превышает 1 л/мин, но утомление может наступать довольно быстро, что объясняется изменениями, происшедшими в центральной нервной системе.

Другой вид статической работы - поддержание позы за счет тонического сокращения мышц - требует незначительных энергетических затрат и менее утомителен. Объясняется это характерными для тонической иннервации редкими и более или менее равномерными импульсами из центральной нервной системы и особенностями самой сократительной реакции, редкой и слабой импульсацией, тягучестью и слитностью импульсов, устойчивостью эффекта. Примером может служить привычное положение человека стоя.


Рис. 2. Схема феномена Лингарда.

жных полимеров; наличие в организме и взаимодействие этих веществ обеспечивает существование жизни. Являясь составной частью молекулы воды, кислород участвует практически во всех биохимических процессах протекающих в организме.

Кислород незаменим, при его недостатке эффективным средством может быть только восстановление нормального снабжения организма кислородом. Даже кратковременное (несколько минут) прекращение поступления кислорода в организм может вызвать тяжелые нарушения его функций и последующую смерть.

3. РОЛЬ УГЛЕРОДА В ОРГАНИЗМЕ ЧЕЛОВЕКА

УГЛЕРОД - важнейший биогенный элемент, составляющий основу жизни на Земле, структурная единица огромного числа органических соединений, участвующих в построении организмов и обеспечении их жизнедеятельности (биополимеры, а также многочисленные низкомолекулярные биологически активные вещества - витамины, гормоны, медиаторы и др.). Значительная часть необходимой организмам энергии образуется в клетках за счёт окисления углерода. Возникновение жизни на Земле рассматривается в современной науке как сложный процесс эволюции углеродистых соединений.

В организм человека углерод поступает с пищей (в норме около 300 г в сутки). Общее содержание углерода достигает около 21% (15 кг на 70 кг общей массы тела). Углерод составляет 2/3 массы мышц и 1/3 массы костной ткани. Выводится из организма преимущественно с выдыхаемым воздухом (углекислый газ) и мочой (мочевина).

Главной функцией углерода является формирование разнообразия органических соединений, тем самым, обеспечивая биологическое разнообразие, участие во всех функциях и проявлениях живого. В биомолекулах углерод образует, полимерные цепи и прочно соединяется с водородом, кислородом, азотом и другими элементами. Столь существенная физиологическая роль углерода определяется тем, что этот элемент входит в состав всех органических соединений и принимает участие практически во всех биохимических процессах в организме. Окисление соединений углерода под действием кислорода приводит к образованию воды и углекислого газа; этот процесс служит для организма источником энергии. Двуокись углерода CO2 (углекислый газ) образуется в процессе обмена веществ, является стимулятором дыхательного центра, играет важную роль в регуляции дыхания и кровообращения.

В свободном виде углерод не токсичен, но многие его соединения обладают значительной токсичностью. К таким соединениям следует отнести окись углерода СО (угарный газ), четыреххлористый углерод CСl4, сероуглерод СS2, соли цианистой кислоты HCN, бензол С6Н6 и другие. Углекислый газ в концентрации свыше 10% вызывает ацидоз (снижение рН крови), одышку и паралич дыхательного центра.

Длительное вдыхание каменноугольной пыли может привести к антракозу, заболеванию, сопровождающемуся отложением угольной пыли в ткани легких и лимфатических узлах, склеротическими изменениями легочной ткани. Токсическое действие углеводородов и других соединений нефти у рабочих нефтедобывающей промышленности может проявиться в огрубении кожи, появлении трещин и язв, развитии хронических дерматитов.

Для человека углерод может быть токсичен в форме окиси углерода (СО) или цианидов (CN-).

4. РОЛЬ ВОДОРОДА В ОРГАНИЗМЕ ЧЕЛОВЕКА

Вода важнейшее соединение водорода в живом организме. Основные функции воды следующие:

Вода, обладающая высокой удельной теплоемкостью, обеспечивает поддержание постоянства температуры тела. При перегреве тела происходит испарение воды с его поверхности. Из-за высокой теплоты парообразования этот процесс сопровождается большими затратами энергии, в результате чего температура тела понижается. Так поддерживается тепловой баланс организма.

Вода поддерживает кислотно-основное равновесие организма. Большинство тканей и органов в основном состоят из воды. Соблюдение общего кислотно-основного баланса в организме не исключает больших различий в значениях рН для разных органов и тканей. Важным соединением водорода является пероксид водорода Н2O2 (традиционное название перекись водорода). Н2O2 окисляет липидный слой мембран клеток, разрушая его.

5. РОЛЬ КАЛИЯ В ОРГАНИЗМЕ ЧЕЛОВЕКА

Калий - обязательный участник многих обменных процессов. Важное значение имеет калий в поддержании автоматизма сокращения сердечной мышцы - миокарда; обеспечивает выведение ионов натрия из клеток и замену их ионами калия, что в свою очередь сопровождается выведением избыточной жидкости из организма.

По сравнению с другими продуктами калия больше всего в сушеных абрикосах, инжире, апельсинах, мандаринах, картофеле (500 г картофеля обеспечивают суточную потребность), сушеных персиках, репе, шиповнике, черной и красной смородине, бруснике, землянике, арбузах, дыне, сое, алыче, свежих огурцах, брюссельской капусте, грецких и лесных орехах, зелени петрушки, изюме, черносливе, ржаном хлебе, овсяной крупе.

Суточная потребность калия для взрослого человека 2-3 г в сутки, а для ребенка - 16-30 мг на кг массы тела. Необходимый минимум потребления калия для человека в сутки составляет около 1 г. При нормальном пищевом рационе суточная потребность в калии полностью удовлетворяется, но отмечаются еще сезонные колебания в потреблении калия. Так, весной его потребление невысоко - около 3 г/сутки, а осенью максимальное потребление - 5-6 г/сутки.

Учитывая тенденцию современных людей к употреблению с пищей большого количества поваренной соли, также возрастает и потребность в калии, который может нейтрализовать неблагоприятное влияние избытка количества натрия на организм.

Недостаток поступления калия с пищей может привести к дистрофии даже при нормальном содержании белков в рационе. Нарушение обмена калия проявляется при хронических заболеваниях почек и сердечно-сосудистой системы, при заболеваниях желудочно-кишечного тракта (особенно, сопровождающихся поносом и рвотой), при заболевании желез внутренней секреции и другой патологии.

Недостаток калия в организме проявляется, прежде всего нарушениями нервно-мышечной и сердечнососудистой систем (сонливость, нарушение движений, дрожание конечностей, замедленное сердцебиение). В лечебных целях применяются препараты калия.

Избыток калия наблюдается значительно реже, но представляет собой крайне опасное состояние: вялые параличи конечностей, изменения со стороны сердечно-сосудистой системы. Такое состояние может проявляться при выраженном обезвоживании организма, гиперкортицизме с нарушением функции почек и при введении больному большого количества калия.

6. РОЛЬ СЕРЫ В ОРГАНИЗМЕ ЧЕЛОВЕКА

Сера в организме человека - непременная составная часть клеток, тканей органов, ферментов, гормонов, в частности, инсулина важнейшего фермента поджелудочной железы и серосодержащих аминокислот; обеспечивает пространственную организацию молекул белков, необходимую для их функционирования, защищает клетки, ткани и пути биохимического синтеза от окисления, а весь организм - от токсического действия чужеродных веществ. Довольно много ее в нервной, соединительной, костной тканях. Сера является компонентом структурного белка коллагена. Пополнение организма серой обеспечивается правильно организованным питанием, в которое включают мясо, куриное яйцо, овсяную и гречневую крупы, мучные изделия, молоко, сыры, бобовые овощи и капусту.

Несмотря на значительное число проведенных исследований, роль серы в обеспечении жизнедеятельности организма выяснена не в полной мере. Так, пока отсутствуют четкие клинические описания каких-либо специфических расстройств, связанных с недостаточным поступлением серы в организм. В то же время известны ацидоаминопатии - расстройства, связанные с нарушением обмена серосодержащих аминокислот (гомоцистинурия, цистатионурия). Имеется также обширная литература, относящаяся к клинике острых и хронических интоксикаций соединениями серы.

Основные проявления дефицита серы:

·симптомы заболеваний печени;

·симптомы заболеваний суставов;

·симптомы заболеваний кожи;

·разнообразные и многочисленные проявления дефицита в организме и нарушения метаболизма биологически активных серосодержащих соединений.

Повышенное содержание серы в организме.

При высоких концентрациях сероводорода во вдыхаемом воздухе, клиническая картина интоксикации развивается очень быстро, в течение нескольких минут возникают судороги, потеря сознания, остановка дыхания. В дальнейшем последствия перенесенного отравления могут проявляться стойкими головными болями, нарушениями психики, параличами, расстройствами функций системы дыхания и желудочно-кишечного тракта.

Установлено, что парентеральное введение мелко измельченной серы в масляном растворе в количестве 1-2 мл сопровождается гипертермией с гиперлейкоцитозом и гипогликемией. Полагают, что при парентеральном введении токсичность ионов серы в 200 раз выше, чем ионов хлора.

Токсичность соединений серы, попавших в желудочно-кишечный тракт, связана с их превращением кишечной микрофлорой в сульфид водорода, весьма токсичным соединением.

В случаях смертельных исходов после отравления серой при вскрытии, отмечают признаки эмфиземы легких, воспаления мозга, острого катарального энтерита, некроза печени, кровоизлияния (петехии) в миокард.

При хронических интоксикациях (сероуглерод, сернистый газ), наблюдаются нарушения психики, органические и функциональные изменения нервной системы, сла

Поделитесь с друзьями или сохраните для себя:

Загрузка...