Параметры гамма распределения. Вероятность и статистика – основные факты. Случайные величины и их распределения

THE PRACTICE OF APPLYING GAMMA DISTRIBUTION THE THEORY OF RELIABILITY OF TECHNICAL SYSTEMS

Ruslan Litvinenko

candidate of technical sciences, docent, associate professor at the sub-department of electrotechnical complexes and systems, Kazan state power engineering university,

Russia, Republic of Tatarstan, Kazan

Aleksandr Jamshhikov

master student ,

Russia, Republic of Tatarstan, Kazan

Aleksej Bagaev

master student Kazan state power engineering university ,

Russia, Republic of Tatarstan, Kazan

АННОТАЦИЯ

В практике эксплуатации технических систем в большинстве случаев приходится иметь дело с вероятностными (случайными) процессами, когда функция отражает аргумент с некоторой вероятностью. В условиях неопределенности информации о законе распределения времени наступления отказов вследствие малых объемов статистических данных, что как правило бывает на начальных этапах разработки техники, исследователю приходится принимать решение о выборе априорной модели надежности, исходя из опыта предыдущей эксплуатации прототипов или аналогов. Систематизация информации о практическом использовании основных распределений при прогнозировании и оценке надежности различных технических систем является актуальной научной задачей.

В основе изложенного материала лежит систематизация информации опубликованной литературе, и представляющая анализ результатов модельных и экспериментальных исследований надежности техники, а также статистические данные полученные в ходе эксплуатации.

Представленная теоретическая информация о применении гамма-распределения в теории надежности может быть использована в качестве первого приближения, и подлежит обязательному уточнению, с использованием различных критериев проверки гипотез, по мере увеличения объема статистических данных в ходе последующих испытаний.

Надо иметь достаточно оснований для применения экспоненциального закона распределения, как и любого другого. Поэтому статья может быть полезна исследователям на ранних этапах разработки или модернизации технической системы, в качестве априорной информации для построения моделей и критериев, используемых для обеспечения и контроля надежности.

ABSTRACT

In practice, operation of technical systems in most cases have to deal with stochastic (random) processes, when the function reflects the argument with a certain probability. In the face of uncertainty about the law of distribution of time of occurrence of failures due to small amounts of statistical data, which usually happens in the initial stages of technology development, the researcher has to decide on the choice of prior model reliability based on previous operating experience of prototypes or analogues. Systematization of information on the practical use of basic distributions in forecasting and assessing the reliability of various technical systems is an important scientific task.

In the above material is the systematization of the information published in literature, and representing the analysis results of model and experimental studies of reliability of equipment, as well as statistical data obtained during operation.

Presents theoretical information on the use of gamma distribution in the theory of reliability can be used as a first approximation and is subject to obligatory specification, using different criteria of testing hypotheses, increasing the volume of statistical data in subsequent tests.

It is necessary to have sufficient grounds for application of exponential distribution law, like any other. Therefore, the article may be useful for researchers in the early stages of development or modernization of technical systems, as a priori information to build the models and criteria used to ensure and control the reliability.

Ключевые слова: надежность, распределение, наработка, вероятность, плотность, этап, математическое ожидание.

Keywords: reliability, distribution, operation time, probability, density of distribution, stage, expected value.

Для описания отказов системы могут быть предложены модели, предназначенные для решения различных задач надежности и по-разному учитывающие комплекс факторов, присущих характеру отказов.

Случайный характер возникновения отказов в процессе эксплуатации технических систем и их элементов позволяет применять в их описании вероятностно-статистические методы. Наиболее распространенными являются модели отказов, основанные на распределении соответствующих случайных величин – наработок до отказа невосстанавливаемых объектов и наработок между отказами восстанавливаемых объектов.

В качестве основных видов распределения наработок изделий до отказа следует выделить :

  • экспоненциальное;
  • Вейбулла-Гнеденко;
  • гамма;
  • логарифмически-нормальное;
  • нормальное.

В результате обзора литературы в области надежности технических систем дана оценка практического применения гамма-распределения при исследовании различных технических объектов. На основе проведенного анализа можно подобрать подходящее априорное распределение соответствующего критерия или показателя надежности.

Гамма-распределение имеет двухпараметрическую плотность с параметром формы и параметром масштаба :

.

Вероятность безотказной работы определяется по формуле:

,

где: – гамма-функция;

– неполная гамма-функция.

Математическое ожидание (среднее время безотказной работы) и среднее квадратическое отклонение для гамма-распределения равны:

.

Формула для интенсивности отказов следующая:

.

Гамма-распределение служит для описания износовых отказов; отказов вследствие накопления повреждений; описания наработки сложной технической системы с резервными элементами; распределения времени восстановления ; а также может быть использовано при рассмотрении долговечности (ресурса) некоторых технических объектов .

Гамма-распределение обладает рядом полезных свойств:

На основании вышесказанного можно сделать вывод, что гамма-распределение допустимо использовать на всех участках жизненного цикла: приработки (), нормальной эксплуатации () и старения () .

Исходя из , в задачах, которые решаются в терминах преобразования Лапласа, гамма-распределением удобно аппроксимировать реальные распределения.

В приводится следующее определение: гамма-распределение – характеристика времени возникновения отказов в сложных электромеханических системах в тех случаях, когда имеют место мгновенные отказы элементов на начальной стадии эксплуатации или в процессе отладки системы, то есть является удобной характеристикой времени возникновения отказов аппаратуры в процессе ее приработки.

Для сложных технических систем, состоящих из элементов, у которых вероятность безотказной работы имеет показательное распределение, вероятность безотказной работы системы в целом будет иметь гамма-распределение.

Распределение времени возникновения отказов сложной технической системы с резервом замещением (при условии, что потоки отказов основной системы и всех резервных простейшие) также может быть описано гамма-распределением . Аналогичным образом в случае ненагруженного или смешанного резервирования вероятность безотказной работы системы подчиняется обобщенному гамма-распределению.

В заключение необходимо отметить, что при решении отдельных задач также применяют специальные виды (их несколько десятков), а также дискретные распределения, которые в рамках данной статьи не рассматривались. При этом между распределениями существуют различные взаимные переходы и связи. Несмотря на существующие критерии согласия выбранного теоретического и эмпирического распределения, они все дают ответ на вопрос: есть или нет достаточно серьезных оснований отвергнуть гипотезу о выбранном распределении? Авторами замечено, что любые данные можно подогнать под многопараметрический закон, даже если он не будет соответствовать реальным физическим явлениям . Таким образом, при выборе вида распределения и его параметров необходимо прежде всего учитывать физическую сущность происходящих процессов и событий.

Список литературы:

  1. ГОСТ Р.27.001-2009. Надежность в технике. Модели отказов. – М.: Стандартинформ, 2010. – 16 с.
  2. Герцбах И.Б., Кордонский Х.Б. Модели отказов / под ред. Б.В. Гнеденко. – М.: Советское радио, 1966. – 166 с.
  3. Гнеденко Б.В. Вопросы математической теории надежности. – М.: Радио и связь,1983. – 376 с.
  4. Каштанов В.Н., Медведев А.И. Теория надежности сложных систем: уч.пособие – М.: ФИЗМАТЛИТ, 2010. – 609 с.
  5. Литвиненко Р.С. Имитационная модель процесса функционирования электротехнического комплекса с учетом надежности его элементов // Журнал «Надежность». – 2016. – № 1 (56) – С. 46–54.
  6. Литвиненко Р.С., Идиятуллин Р.Г., Киснеева Л.Н. Оценка надежности гибридного транспортного средства на этапе разработки // Журнал «Транспорт: наука, техника, управление». – 2016. – № 2 – С. 34–40.
  7. Машиностроение: энциклопедия в 40 т. Т. IV-3: Надежность машин / В.В. Клюев, В.В. Болотин, Ф.Р. Соснин и др.; под общ. ред. В.В. Клюева. – М.: Машиностроение, 2003. – 592 с.
  8. Труханов В.М. Надежность технических систем типа подвижных установок на этапе проектирования и испытания опытных образцов: научное издание – М.: Машиностроение, 2003. – 320 с.
  9. Хазов Б.Ф., Дидусев Б.А. Справочник по расчету надежности машин на стадии проектирования. – М.: Машиностроение, 1986. – 224 с.
  10. Черкесов Г.Н. Надежность аппаратно-программных комплексов: учеб. пособие. – СПб.: Питер, 2005. – 479 с.

Рассмотрим Гамма распределение, вычислим его математическое ожидание, дисперсию, моду. С помощью функции MS EXCEL ГАММА.РАСП() построим графики функции распределения и плотности вероятности. Сгенерируем массив случайных чисел и произведем оценку параметров распределения.

Гамма распределение (англ. Gamma distribution ) зависит от 2-х параметров: r (определяет форму распределения) и λ (определяет масштаб). этого распределения задается следующей формулой:

где Г(r) – гамма-функция:

если r – положительное целое, то Г(r)=(r-1)!

Вышеуказанная форма записи плотности распределения наглядно показывает его связь с . При r=1 Гамма распределение сводится к Экспоненциальному распределению с параметром λ.

Если параметр λ – целое число, то Гамма распределение является суммой r независимых и одинаково распределенных по экспоненциальному закону с параметром λ случайных величин x . Таким образом, случайная величина y = x 1 + x 2 +… x r имеет гамма распределение с параметрами r и λ.

, в свою очередь, тесно связано с дискретным . Если Распределение Пуассона описывает число случайных событий, произошедших за определенный интервал времени, то Экспоненциальное распределение, в этом случае,описывает длину временного интервала между двумя последовательными событиями.

Из этого следует, что, например, если время до наступления первого события описывается экспоненциальным распределением с параметром λ, то время до наступления второго события описывается гамма распределением с r = 2 и тем же параметром λ.

Гамма распределение в MS EXCEL

В MS EXCEL принята эквивалентная, но отличающаяся параметрами форма записи плотности гамма распределения .

Параметр α (альфа ) эквивалентен параметру r , а параметр b (бета ) – параметру 1/λ . Ниже будем придерживаться именно такой записи, т.к. это облегчит написание формул.

В MS EXCEL, начиная с версии 2010, для Гамма распределения имеется функция ГАММА.РАСП() , английское название - GAMMA.DIST(), которая позволяет вычислить плотность вероятности (см. формулу выше) и (вероятность, что случайная величина X, имеющая гамма распределение , примет значение меньше или равное x).

Примечание : До MS EXCEL 2010 в EXCEL была функция ГАММАРАСП() , которая позволяет вычислить интегральную функцию распределения и плотность вероятности . ГАММАРАСП() оставлена в MS EXCEL 2010 для совместимости.

Графики функций

В файле примера приведены графики плотности распределения вероятности и интегральной функции распределения .

Гамма распределение имеет обозначение Gamma(альфа; бета).

Примечание : Для удобства написания формул в файле примера для параметров распределения альфа и бета созданы соответствующие .

Примечание : Зависимость от 2-х параметров позволяет построить распределения разнообразных форм, что расширяет применение этого распределения. Гамма распределение , как и Экспоненциальное распределение часто используется для расчета времени ожидания между случайными событиями. Кроме того, возможно использование применение этого распределения для моделирования уровня осадков и при проектировании дорог.

Как было показано выше, если параметр альфа = 1, то функция ГАММА.РАСП() возвращает с параметром 1/бета . Если параметр бета = 1, функция ГАММА.РАСП() возвращает стандартное гамма распределение .

Примечание : Т.к. является частным случаем гамма распределения , то формула =ГАММА.РАСП(x;n/2;2;ИСТИНА ) для целого положительного n возвращает тот же результат, что и формула =ХИ2.РАСП(x;n; ИСТИНА) или =1-ХИ2.РАСП.ПХ(x;n) . А формула =ГАММА.РАСП(x;n/2;2;ЛОЖЬ) возвращает тот же результат, что и формула =ХИ2.РАСП(x;n; ЛОЖЬ) , т.е. плотность вероятности ХИ2-распределения.

В файле примера на листе Графики приведен расчет гамма распределения равного альфа*бета и

Гамма-распределение

Гамма-распределение является двухпараметрическим распределением. Оно занимает достаточно важное место в теории и практике надежности. Плотность распределения имеет ограничение с одной стороны (). Если параметр а формы кривой распределения принимает целое значение, это свидетельствует о вероятности появления такого же числа событий (например, отказов)

при условии, что они независимы и появляются с постоянной интенсивностью λ (см. рис. 4.4).

Гамма-распределение широко применяют при описании появления отказов стареющих элементов, времени восстановления, наработки на отказ резервированных систем. При различных параметрах гамма-распределение принимает разнообразные формы, что и объясняет его широкое применение.

Плотность вероятности гамма-распределения определяется равенством

где λ > 0, α > 0.

Кривые плотности распределения приведены на рис. 4.5.

Рис. 4.5.

Функция распределения

Математическое ожидание и дисперсия равны соответственно

При α < 1 интенсивность отказов монотонно убывает, что соответствует периоду приработки изделия, при α > 1 – возрастает, что характерно для периода изнашивания и старения элементов.

При α = 1 гамма-распределение совпадает с экспоненциальным распределением, при α > 10 гамма-распределение приближается к нормальному закону. Если а принимает значения произвольных целых положительных чисел, то такое гамма-распределение называют распределением Эрланга. Если λ = 1/2, а значение а кратно 1 /2, то гамма-распределение совпадает с распределением χ2 (хи-квадрат ).

Установление функции распределения показателей надежности по результатам обработки данных статистической информации

Наиболее полной характеристикой надежности сложной системы является закон распределения, выраженный в виде функции распределения, плотности распределения или функции надежности.

О виде теоретической функции распределения можно судить по эмпирической функции распределения (рис. 4.6), которая определяется из соотношения

где т, – число отказов на интервале времени t; N – объем испытаний; t i < t < t i+1 интервал времени, на котором определяют эмпирическую функцию.

Рис. 4.6.

Построение эмпирической функции осуществляют, выполняя суммирование приращений, полученных на каждом интервале времени:

где k – число интервалов.

Эмпирическая функция надежности является функцией, противоположной функции распределения; ее определяют по формуле

Оценку плотности вероятности находят по гистограмме. Построение гистограммы сводится к следующему. Всю область значений времени t разбивают на интервалы t 1, t 2, ..., t i и для каждого из них осуществляют оценку плотности вероятности по формуле

где т i число отказов на i -м интервале, i = 1, 2,..., k; (t i+1 – t i) – отрезок времени i -го интервала; N – объем испытаний; k – число интервалов.

Пример гистограммы приведен на рис. 4.7.

Рис. 4.7.

Сглаживая ступенчатую гистограмму плавной кривой, но ее виду можно судить о законе распределения случайной величины. В практике для сглаживания кривой часто, например, используют метод наименьших квадратов. Для более точного установления закона распределения необходимо, чтобы число интервалов было не менее пяти, а число реализаций, попадающих в каждый интервал, – не менее десяти.

Разночтения в понимании терминологии надежности

Проблема терминологии является достаточно сложной в различных областях науки и человеческой деятельности в целом. Известно, что споры о терминах ведутся в течение многих веков. Если коснуться переводов стихотворений, то можно увидеть яркое подтверждение этой мысли. Например, переводы такого всемирно известного шедевра, как "Гамлет", у Б. Л. Пастернака и Π. П. Гнедича резко отличаются. У первого из них смысл трагедии перевешивает музыку стиха, в отличие от второго. А оригинал "Гамлета", написанный языком XVI в., труден для понимания неангличанам, да и англичанам тоже, поскольку сам язык сильно эволюционировал за несколько веков, как, собственно, и любой другой язык в соответствии с законом синхронизма-десинхронизма.

Аналогичная картина наблюдается и в мировых религиях. Перевод Библии с церковно-славянского на русский язык, длившийся 25 лет, "развел" (вплоть до остановки перевода) святителя Филарета Московского (Дроздова) и крупнейшего церковного писателя – святителя Феофана Затворника (в ближайшее время запланировано издание собрания его сочинений в 42 т.). Переводы и уточнения "книги книг" Библии "переводят" людей в лагеря непримиримых врагов по жизни в нашем мире. Рождаются секты, еретики и герои, иногда даже льется кровь. А многочисленные переводы на русский язык основополагающей в сфере философии работы Иммануила Канта "Критика чистого разума" только укрепляют справедливость нашего тезиса о сложности проблемы терминологии (сверхбольшая система) в различных областях науки и человеческой деятельности в целом.

Антиномические явления имеют место в области науки и техники. Одно из решений проблемы обеспечения корректности и адекватности терминологии изложил Г. Лейбниц. Он в плане развития науки и техники в XVII в. предлагал для прекращения споров давать определения терминов с помощью универсального языка в цифровой форме (0011...).

Отметим, что в науке о надежности путь определения терминов традиционно решается на государственном уровне с помощью государственных стандартов (ГОСТов). Однако появление все более высокоинтеллектуальных технических систем, взаимодействие и сближение живых и неживых объектов, в них функционирующих, ставит новые, весьма трудные задачи обучения в педагогике и психологии, заставляет искать творческие компромиссные решения.

У зрелого и поработавшего в конкретной научной области, и в частности в области надежности, сотрудника актуальность вопросов терминологии не вызывает сомнений. Как писал Готфрид Вильгельм Лейбниц (в работе о создании универсального языка), споров было бы меньше, если бы термины были определены.

Разночтения в понимании терминологии надежности попытаемся сгладить следующими замечаниями.

Мы говорим "функция распределения" (ФР), опуская слово "наработка" или "отказ". Наработка чаще всего понимается как категория времени. Для невосстанавливаемых систем по смыслу более правильно надо говорить – интегральная ФР наработки до отказа, а для восстанавливаемых – наработка па отказ. А поскольку наработку чаще всего понимают как случайную величину, применяется отождествление вероятности безотказной работы (ВБР) и (1 – ФР), называемой в этом случае функцией надежности (ФН). Целостность такового подхода достигается за счет полной группы событий . Тогда

ВБР = ФН = 1 – ФР.

То же справедливо в отношении плотности распределения (ПР), которая является первой производной от ФР, в частности по времени, и, образно говоря, характеризует "скорость" появления отказов.

Полнота описания надежности изделия (в частности, для изделий разового применения), включающая динамику устойчивости поведения, характеризуется интенсивностью отказов через отношение ПР к ВБР и физически понимается как смена состояния изделия, а математически – введена в теории массового обслуживания через понятие потока отказов и ряд допущений в отношении самих отказов (стационарность, ординарность и др.).

Интересующихся этими вопросами, возникающими при выборе показателей надежности на этапе проектирования изделий, можно отослать к трудам таких именитых авторов, как А. М. Половко, Б. В. Гнеденко, Б. Р. Левин – выходцев из лаборатории надежности при Московском университете, руководимой А. Н. Колмогоровым, а также А. Я. Хинчина, E. С. Венцель, И. А. Ушакова, Г. В. Дружинина, А. Д. Соловьева, Ф. Байхельта, Ф. Прошана – основателей статистической теории надежности.

  • См.: Колмогоров А. Н. Основные понятия теории вероятностей. М. : Мир, 1974.

Простейший вид гамма-распределения - это распределение с плотностью

где - параметр сдвига, - гамма-функция, т.е.

(2)

Каждое распределение можно "развернуть" в масштабно-сдвиговое семейство. Действительно, для случайной величины , имеющей функцию распределения, рассмотрим семейство случайных величин, где- параметр масштаба, а- параметр сдвига. Тогда функция распределенияесть.

Включая каждое распределение с плотностью вида (1) в масштабно-сдвиговое семейство, получаем принятую в параметризацию семейства гамма-распределений:

Здесь - параметр формы,- параметр масштаба,- параметр сдвига, гамма-функциязадается формулой (2).

В литературе имеются и иные параметризации. Так, вместо параметра часто используют параметр. Иногда рассматривают двухпараметрическое семейство, опуская параметр сдвига, но сохраняя параметр масштаба или его аналог - параметр. Для некоторых прикладных задач (например, при изучении надежности технических устройств) это оправдано, поскольку из содержательных соображений представляется естественным принять, что плотность распределения вероятностей положительна для положительных значений аргумента и только для них. С этим предположением связана многолетняя дискуссия в 80-х годах о "назначаемых показателях надежности", на которой не будем останавливаться.

Частные случаи гамма-распределения при определенных значениях параметров имеют специальные названия. При имеем экспоненциальное распределение. При натуральномигамма-распределение - это распределение Эрланга, используемое, в частности, в теории массового обслуживания. Если случайная величинаимеет гамма-распределение с параметром формытаким, что- целое число,и, тоимеет распределение хи-квадратсстепенями свободы.

Области применения гамма-распределения

Гамма-распределение имеет широкие приложения в различных областях технических наук (в частности, в надежности и теории испытаний), в метеорологии, медицине, экономике . В частности, гамма-распределению могут быть подчинены общий срок службы изделия, длина цепочки токопроводящих пылинок, время достижения изделием предельного состояния при коррозии, время наработки до k-го отказа и т.д. . Продолжительность жизни больных хроническими заболеваниями, время достижения определенного эффекта при лечении в ряде случаев имеют гамма-распределение. Это распределение оказалось наиболее адекватным для описания спроса в ряде экономико-математических моделей управления запасами .

Возможность применения гамма-распределения в ряде прикладных задач иногда может быть обоснована свойством вопроизводимости: сумма независимых экспоненциально распределенных случайных величин с одним и тем же параметромимеет гамма-распределение с параметрами формы, масштабаи сдвига. Поэтому гамма-распределение часто используют в тех прикладных областях, в которых применяют экспоненциальное распределение.

Различным вопросам статистической теории, связанным с гамма-распределением, посвящены сотни публикаций (см. сводки ). В данной статье, не претендующей на всеохватность, рассматриваются лишь некоторые математико-статистические задачи, связанные с разработкой государственного стандарта .

ОСНОВНЫЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН

Н ормальный закон распределения и его значение в теории вероятностей. Логарифмически нормальный закон. Гамма-распределение. Экспоненциальный закон и его использование в теории надежности, теории очередей. Равномерный закон. Распределение . Распределение Стьюдента. Распределение Фишера.

1. Нормальный закон распределения (закон Гаусса).

Плотность вероятности нормально распределенной случайной величины выражается формулой:

. (8.1)

На рис. 16 представлена кривая распределения. Она симметрична относительно

Рис. 16 Рис. 17

точки (точка максимума). При уменьшении ордината точки максимума неограниченно возрастает. При этом кривая пропорционально сплющивается вдоль оси абсцисс, так что площадь ее под графиком остается равной единице (рис. 17).

Нормальный закон распределения очень широко распространен в задачах практики. Объяснить причины широкого распространения нормального закона распределения впервые удалось Ляпунову. Он показал, что если случайная величина может рассматриваться как сумма большого числа малых слагаемых, то при достаточно общих условиях закон распределения этой случайной величины близок к нормальному независимо от того, каковы законы распределения отдельных слагаемых. А так как практически случайные величины в большинстве случаев бывают результатом действия большого числа различных причин, то нормальный закон оказывается наиболее распространенным законом распределения (подробнее об этом см. главу 9). Укажем числовые характеристики нормально распределенной случайной величины:

Таким образом, параметры и в выражении (8.1) нормального закона распределения представляют собою математическое ожидание и среднее квадратическое отклонение случайной величины. Принимая это во внимание, формулу (8.1) можно переписать следующим образом:

.

Эта формула показывает, что нормальный закон распределения полностью определяется математическим ожиданием и дисперсией случайной величины. Таким образом, математическое ожидание и дисперсия полностью характеризуют нормально распределенную случайную величину. Само собой разумеется, что в общем случае, когда характер закона распределения неизвестен, знания математического ожидания и дисперсии недостаточно для определения этого закона распределения.

Пример 1 . Вычислить вероятность того, что нормально распределенная случайная величина удовлетворяет неравенству .

Решение. Пользуясь свойством 3 плотности вероятности (глава 4, п. 4), получаем:

.

,

где - функция Лапласа (см. приложение 2).

Проделаем некоторые числовые расчеты. Если положить , в условиях примера 1, то

Последний результат означает, что с вероятностью, близкой к единице (), случайная величина, подчиняющаяся нормальному закону распределения, не выходит за пределы интервала . Это утверждение носит название правила трех сигм .

Наконец, если , , то случайная величина, распределенная по нормальному закону с такими параметрами, называется стандартизованной нормальной величиной. На рис. 18 изображен график плотности вероятности этой величины .

2. Логарифмически нормальное распределение.

Говорят, что случайная величина имеет логарифмически нормальное распределение (сокращенно логнормальное распределение ), если ее логарифм распределен нормально, т. е. если

где величина имеет нормальное распределение с параметрами , .

Плотность логнормального распределения задается следующей формулой:

, .

Математическое ожидание и дисперсию определяют по формулам

,

.

Кривая распределения приведена на рис. 19.

Логарифмически нормальное распределение встречается в ряде технических задач. Оно дает распределение размеров частиц при дроблении, распределение содержаний элементов и минералов в изверженных горных породах, распределение численности рыб в море и т.д. Оно встречается во всех

тех задачах, где логарифм рассматриваемой величины можно представить в виде суммы большого числа независимых равномерно малых величин:

,

т. е. , где независимы.

Поделитесь с друзьями или сохраните для себя:

Загрузка...