Позиционные и непозиционные системы счисления. Многообразие систем счислений. Десятичная система счисления, запись чисел в ней

Система счисления - символический метод записи чисел, представление чисел с помощью письменных знаков.
Система счисления:
· даёт представления множества чисел (целых и/или вещественных);
· даёт каждому числу уникальное представление (или, по крайней мере, стандартное представление);
· отражает алгебраическую и арифметическую структуру чисел.
В непозиционных системах счисления от положения цифры в записи числа не зависит величина, которую она обозначает. Примером непозиционной системы счисления является римская система, в которой в качестве цифр используются латинские буквы.
В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции. Количество используемых цифр называется основанием системы счисления. Место каждой цифры в числе называется позицией. Первая известная нам система, основанная на позиционном принципе – шестидесятeричная вавилонская. Цифры в ней были двух видов, одним из которых обозначались единицы, другим – десятки.
Однако наиболее употребительной оказалась индо-арабская десятичная система. Индийцы первыми использовали ноль для указания позиционной значимости величины в строке цифр. Эта система получила название десятичной, так как в ней десять цифр.
Различие между позиционой и непозиционной систем счисления легче всего понять на примере сравнения двух чисел. В позиционной системе счисления сравнение двух чисел происходит следующим образом: в рассматриваемых числах слева направо сравниваются цифры, стоящие в одинаковых позициях. Бóльшая цифра соответствует бóльшему значению числа. Например, для чисел 123 и 234, 1 меньше 2, поэтому число 234 больше, чем число 123. В непозиционной системе счисления это правило не действует. Примером этого может служить сравнение двух чисел IX и VI. Несмотря на то, что I меньше, чем V, число IX больше, чем число VI.
Позиционные системы счисления
Основание системы счисления, в которой записано число, обычно обозначается нижним индексом. Например, 5557 – число, записанное в семеричной системе счисления. Если число записано в десятичной системе, то основание, как правило, не указывается. Основание системы – это тоже число, и его мы будем указывать в обычной десятичной системе. Вообще, число x может быть представлено в системе с основанием p, как x = an·pn +an – 1·pn–1 + a1·p1 + a0·p0, где an...a0 – цифры в представлении данного числа. Так, например,
103510=1·103 + 0·102 + 3·101 + 5·100;
10102 = 1·23 + 0·22 + 1·21 + 0·20 = 10.
Наибольший интерес при работе на ЭВМ представляют системы счисления с основаниями 2, 8 и 16. Вообще говоря, этих систем счисления обычно хватает для полноценной работы как человека, так и вычислительной машины, однако иногда в силу различных обстоятельств все-таки приходится обращаться к другим системам счисления, например к троичной, семеричной или системе счисления по основанию 32.
Чтобы оперировать с числами, записанными в таких нетрадиционных системах, нужно иметь в виду, что принципиально они ничем не отличаются от привычной десятичной. Сложение, вычитание, умножение в них осуществляется по одной и той же схеме.
Почему же не используются другие системы счисления? В основном, потому, что в повседневной жизни люди привыкли пользоваться десятичной системой счисления, и не требуется никакая другая. В вычислительных же машинах используется двоичная система счисления, так как оперировать числами, записанными в двоичном виде, довольно просто.
Часто в информатике используют шестнадцатеричную систему, так как запись чисел в ней значительно короче записи чисел в двоичной системе. Может возникнуть вопрос: почему бы не использовать для записи очень больших чисел систему счисления, например по основанию 50? Для такой системы счисления необходимы 10 обычных цифр плюс 40 знаков, которые соответствовали бы числам от 10 до 49 и вряд ли кому-нибудь понравится работать с этими сорока знаками. Поэтому в реальной жизни системы счисления по основанию, большему 16, практически не используются.
Непозиционные системы счисления
Как только люди начали считать, у них появилась потребность в записи чисел. Находки археологов на стоянках первобытных людей свидетельствуют о том, что первоначально количество предметов отображали равным количеством каких-либо значков (бирок): зарубок, черточек, точек.
Позже, для облегчения счета, эти значки стали группировать по три или по пять. Такая система записи чисел называется единичной (унарной), так как любое число в ней образуется путем повторения одного знака, символизирующего единицу. Отголоски единичной системы счисления встречаются и сегодня. Так, чтобы узнать, на каком курсе учится курсант военного училища, нужно сосчитать, какое количество полосок нашито на его рукаве. Сами того не осознавая, единичной системой счисления пользуются малыши, показывая на пальцах свой возраст, а счетные палочки используется для обучения учеников 1-го класса счету. Единичная система - не самый удобный способ записи чисел. Записывать таким образом большие количества утомительно, да и сами записи при этом получаются очень длинными. С течением времени возникли иные, более удобные, системы счисления.
Древнеегипетская десятичная непозиционная система счисления. Примерно в третьем тысячелетии до нашей эры древние египтяне придумали свою числовую систему, в которой для обозначения ключевых чисел 1, 10, 100 и т.д. использовались специальные значки - иероглифы.
Все остальные числа составлялись из этих ключевых при помощи операции сложения. Система счисления Древнего Египта является десятичной, но непозиционной.
В непозиционных системах счисления количественный эквивалент каждой цифры не зависит от ее положения (места, позиции) в записи числа.
Например, чтобы изобразить 3252 рисовали три цветка лотоса (три тысячи), два свернутых пальмовых листа (две сотни), пять дуг (пять десятков) и два шеста (две единицы). Величина числа не зависела от того, в каком порядке располагались составляющие его знаки: их можно было записывать сверху вниз, справа налево или вперемежку.
Римская система счисления. Примером непозиционной системы, которая сохранилась до наших дней, может служить система счисления, которая применялась более двух с половиной тысяч лет назад в Древнем Риме. В основе римской системы счисления лежали знаки I (один палец) для числа 1, V (раскрытая ладонь) для числа 5, X (две сложенные ладони) для 10, а для обозначения чисел 100, 500 и 1000 стали применять первые буквы соответствующих латинских слов (Сentum - сто, Demimille - половина тысячи, Мille - тысяча).
Чтобы записать число, римляне разлагали его на сумму тысяч, полутысяч, сотен, полусотен, десятков, пятков, единиц. Например, десятичное число 28 представляется следующим образом:
XXVIII=10+10+5+1+1+1 (три десятка, пяток, три единицы).
Для записи промежуточных чисел римляне использовали не только сложение, но и вычитание. При этом применялось следующее правило: каждый меньший знак, поставленный справа от большего, прибавляется к его значению, а каждый меньший знак, поставленный слева от большего, вычитается из него.
Например, IX - обозначает 9, XI - обозначает 11.
Десятичное число 99 имеет следующее представление:
XCIХ = -10+100-1+10.
Римскими цифрами пользовались очень долго. Еще 200 лет назад в деловых бумагах числа должны были обозначаться римскими цифрами (считалось, что обычные арабские цифры легко подделать). Римская система счисления сегодня используется, в основном, для наименования знаменательных дат, томов, разделов и глав в книгах.



8.Перевод чисел из одной системы счисления в другую

В современной вычислительной технике информация чаще всего кодируется с помощью последовательности сигналов всего двух видов: включено или невключено, намагничено или ненамагничено, высокое или низкое напряжение и т.д. Принято обозначать одно состояние цифрой 0, а другое - 1. Такое представление информации в цифровом виде называют двоичным. Набор (последовательность) из нулей и единиц называют двоичным кодом.

Система счисления - совокупность приемов наименования и обозначения чисел. Системы счисления разделяются на две группы: позиционные и непозиционные. Позиционной называется система счисления, в которой значение цифры зависит от ее места (позиции) в ряду цифр, обозначающих число. Системы, не обладающие этим свойством, называются непозиционными (римская система счисления). Основанием позиционной системы счисления называется число цифр, которое используют при записи.

В ЭВМ часто используется восьмеричная и шестнадцатеричная системы счисления. В восьмеричной системе счисления числа записываются с помощью восьми цифр (0 1 2 3 4 5 6 7). Сама восьмерка записывается двумя цифрами: 10. Для записи чисел в шестнадцатеричной системе необходимо уже располагать шестнадцатью различными символами, используемыми как цифры:

10-я: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16-я: 0 1 2 3 4 5 6 7 8 9 А В С D E F

Пример 1. Переведем десятичное число 45 в двоичную систему счисления.

Правило: Чтобы перевести целое положительное десятичное число в систему счисления с другим основанием, нужно это число разделить на основание. Полученное частное снова разделить на основание и т.д. до тех пор, пока частное не окажется меньше основания. В результате записать в одну строку последнее частное и все остатки, начиная с последнего.

Пример 2. Переведем десятичное число 672 в восьмеричную систему счисления.

Пример 3. Переведем десятичное число 934 в шестнадцатеричную систему счисления.

Пример 4. Переведем в двоичную систему счисления положительную десятичную дробь 0.3.

Правило: Чтобы перевести положительную десятичную дробь в двоичную, нужно дробь умножить на 2. Целую часть произведения взять в качестве первой цифры после запятой в двоичной дроби, а дробную часть вновь умножить на 2. В качестве следующей цифры двоичной дроби взять целую часть этого произведения, а дробную часть произведения снова умножить на 2 и т.д. до получения после запятой заданного количества цифр.

Дробная часть 0,6 уже была на втором шаге вычислений. Поэтому вычисления будут повторяться. Следовательно в двоичной системе счисления число 0,3 представляется периодической дробью:

0,3 = 0,0(1001) 2 .

Пример 5. Переведем в двоичную систему счисления положительную десятичную дробь 0,625.

0,625 = 0,101 2 .

Замечание: Перевод десятичного числа в двоичную систему счисления проводится отдельно для его целой и дробной части.

Пример 6. Переведем в десятичную систему счисления двоичное число 1011,011.

Правило: Чтобы перевести число из двоичной системы в десятичную систему счисления, нужно двоичное число представить в виде суммы степеней двойки с коэффициентами-цифрами и найти эту сумму.

1011,0112 = 1 2 3 +0 2 2 +1 2 1 +1 2 0 +0 2 –1 +1 2 –2 +1 2 –3 =1 8+1 2+1+1 (1/2)2+1 (1/2)3 = 8+2+1+1/4+1/8 = 11,375

1011,011 2 = 11,375 10 .

Пример 7. Переведем в десятичную систему счисления восьмеричное число 511.

5118 = 5 8 2 +1 8 1 +1 8 0 =5 64+1 8+1 = 329

511 8 = 329 10 .

Пример 8. Переведем в десятичную систему счисления шестнадцатеричное число 1151.

1 16 3 +1 16 2 +5 16 1 +1 16 0 = 1 4096+1 256+5 16+1 = 4096+256+80+1 = 4433.

1151 16 = 4433 10 .

Пример 9. Переведем двоичное 1100001111010110 число в восьмеричную форму.

Правило: Для преобразования двоичного числа в восьмеричное необходимо двоичную последовательность разбить на группы по три цифры справа налево и каждую группу заменить соответствующей восьмеричной цифрой. Аналогично поступают и при переводе в шестнадцатеричную систему, только двоичную последовательность разбивают не на три, а на четыре цифры.

Переведем наше число в восьмеричную и шестнадцатеричную системы:

1 100 001 111 010 110 1100 0011 1101 0110

1 4 1 7 2 6 С 3 D 6

Аналогично осуществляется и обратное преобразование: для этого каждую цифру восьмеричного или шестнадцатеричного числа заменяют группой из трех или четырех цифр. Например:

A B 5 1 1 7 7 2 0 4

1010 1011 0101 0001 1 111 111 010 000 100

архитектуре персонального компьютера

Введение

В зависимости от способа изображения чисел с помощью цифр системы счисления делятся на позиционные и непозиционные.

Вычислительные машины в принципе могут быть построены в любой системе счисления. Но столь привычная для нас десятичная система окажется крайне неудобной. Если в механических вычислительных устройствах, использующих десятичную систему, достаточно просто применить элемент со множеством состояний (колесо с десятью зубьями), то в электронных машинах надо было бы иметь 10 различных потенциалов в цепях.

1. Системы счисления

Непозиционные и позиционные системы счисления

Системой счисления называется совокупность правил для обозначения (записи) действительных чисел с помощью цифровых знаков. Для записи чисел в конкретных системах счисления используется некоторый конечный алфавит, состоящий из цифр а1, а2, а3,…., аn. При этом каждой цифре аi в записи числа ставится в соответствие определенный количественный эквивалент. Различают непозиционные и позиционные системы счисления.

Непозиционные системы счисления

В ней количественный эквивалент каждой цифры, входящей в запись данного числа, не зависит от места (позиции) этой цифры в ряду других цифр. Пример: римская система счисления. В ней для записи различных целых чисел используются символы I, V, X, L, C, D, M и т.д., обозначающие соответственно 1, 5, 10, 50, 100, 500, 1000 и т.д. Например, запись MCMLXXXV означает число 1985. Общим недостатком непозиционных систем является сложность представления в них достаточно больших чисел, так как при этом получается чрезвычайно громоздкая запись чисел или требуется очень большой алфавит используемых цифр. В ЭВМ применяют только позиционные системы счисления, в которых количественный эквивалент каждой цифры алфавита зависит не только от вида этой цифры, но и от ее местоположения в записи числа.

Позиционные системы счисления

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее позиции в последовательности цифр, изображающих число. Любая позиционная система характеризуется своим основанием. Основание позиционной системы счисления - это количество различных знаков или символов, используемых для изображения цифр в данной системе. За основание можно принять любое натуральное число - два, три, четыре, шестнадцать и т.д. Следовательно, возможно бесконечное множество позиционных систем.

2. Основные позиционные системы счисления

Десятичная система счисления

Пришла в Европу из Индии, где она появилась не позднее VI века н.э. В этой системе 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, но информацию несет не только цифра, но и место, на котором цифра стоит (то есть ее позиция). В десятичной системе счисления особую роль играют число 10 и его степени: 10, 100, 1000 и т.д. Самая правая цифра числа показывает число единиц, вторая справа - число десятков, следующая - число сотен и т.д. Позиции цифр в записи числа называют его разрядами. В десятичной системе счисления вес каждого разряда в 10 раз больше веса предыдущего. Всякое число в десятичной системе счисления можно представить в виде суммы различных целых степеней десяти с соответствующими коэффициентами аi (0-9), взятыми из алфавита данной системы счисления.

Например: 245,83 = 2 * 102 + 4 * 101 + 5 * 100 + 8 * 10-1 + 3 * 10-2. Любое десятичное позиционное число N можно представить с помощью целых степеней десяти, взятых с соответствующими коэффициентами, т.е.

N10 = am * 10m + am-1 * 10m-1 + …+ a1*10+ +a0 * 100 + a-1 * 10-1 +…+ a-n * 10-n.

Двоичная система счисления.

В этой системе всего две цифры - 0 и 1. Особую роль здесь играет число 2 и его степени: 2, 4, 8 и т.д. Самая правая цифра числа показывает число единиц, следующая цифра - число двоек, следующая - число четверок и т.д. Двоичная система счисления позволяет закодировать любое натуральное число - представить его в виде последовательности нулей и единиц. В двоичном виде можно представлять не только числа, но и любую другую информацию: тексты, картинки, фильмы и аудиозаписи. Инженеров двоичное кодирование привлекает тем, что легко реализуется технически. Наиболее простыми с точки зрения технической реализации являются двухпозиционные элементы, например, электромагнитное реле, транзисторный ключ.

Восьмеричная система счисления.

В этой системе счисления 8 цифр: 0, 1, 2, 3, 4, 5, 6, 7. Цифра 1, указанная в самом младшем разряде, означает - как и в десятичном числе - просто единицу. Та же цифра 1 в следующем разряде означает 8, в следующем 64 и т.д. Число 100 (восьмеричное) есть не что иное, как 64 (десятичное). Чтобы перевести в двоичную систему, например, число 611 (восьмеричное), надо заменить каждую цифру эквивалентной ей двоичной триадой (тройкой цифр). Легко догадаться, что для перевода многозначного двоичного числа в восьмеричную систему нужно разбить его на триады справа налево и заменить каждую триаду соответствующей восьмеричной цифрой.

Шестнадцатеричная система счисления.

Запись числа в восьмеричной системе счисления достаточно компактна, но еще компактнее она получается в шестнадцатеричной системе. В качестве первых 10 из 16 шестнадцатеричных цифр взяты привычные цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, а вот в качестве остальных 6 цифр используют первые буквы латинского алфавита: A, B, C, D, E, F. Цифра 1, записанная в самом младшем разряде, означат просто единицу. Та же цифра 1 в следующем - 16 (десятичное), в следующем - 256 (десятичное) и т.д. Цифра F, указанная в самом младшем разряде, означает 15 (десятичное). Перевод из шестнадцатеричной системы в двоичную и обратно производится аналогично тому, как это делается для восьмеричной системы.

Системой счисления называется совокупность приемов и правил представления чисел с помощью цифровых знаков.

Непозиционной называется такая система счисления, в которой значение любой цифры не зависит от положения (позиции) в ряду цифр, изображающих это число.

Например , в числе ХХХ, записанном в римской системе счисления, каждый разряд означает 10 единиц.

Задача 1. Записать числа в римской нумерации: а) 193; б) 564; в) 2708.

Решение: а) 193 - это сто (С) + девяносто, т.е. сто без десятка (ХС) + три (III). Следовательно, 193 запишется как СХСIII .

б) 564 - это пятьсот (D) + пятьдесят (L) + десять (Х) + четыре (IV), т.е. число 564 запишется как DLХIV.

в) 2708 - это две тысячи (ММ) + плюс пятьсот (D) + сто (С) + сто (С) + пять (V) + три (III). Следовательно, число 2708 записывается так: ММDCCVIII.

Позиционной называется такая система счисления, в которой значение любой цифры зависит от ее положения (позиции) в ряду цифр, изображающих это число.

Например, цифра 3 в числе 723, записанном в десятичной системе счисления, означает три единицы, а в числе 325 – три сотни. К позиционным СС можно отнести шестидесятиричную вавилонскую и десятичную системы счисления.

Под основанием системы счисления понимается определенное постоянное для данной системы счисления отношение единиц соседних разрядов.



Основанием системы счисления может быть любое натуральное число большее 1.

Система счисления с основанием равным 1 называется унарной .

Для записи чисел в позиционной системе счисления используются цифры, количество которых соответствует основанию системы.

Десятичная система счисления, запись чисел в ней

В практике установилась десятичная система счисления. Как известно, в десятичной СС для записи чисел используются 10 знаков (цифр): 1,2,3,4,5,6,7,8,9,0. Из них образуются конечные последовательности, которые являются краткими записями чисел. Например, последовательность 3745 является краткой записью числа .

Определение 4.Десятичной записью натурального числа x называется его представление в виде:

где коэффициенты a n , a n-1 , …, a 1 , a 0 принимают значения 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 и

Сумму в краткой форме принято записывать последовательностью цифр с чертой наверху, чтобы отличать от произведения чисел:

Так как понятие числа и его записи нетождественны, то существование и единственность десятичной записи натуральной записи надо доказывать.

Теорема 1 . Любое натуральное число х можно представить в виде:

где коэффициенты a n , a n-1 , …, a 1 , a 0 принимают значения 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

и такая запись единственная.

Десятичная запись числа позволяет просто решать вопрос о том, какое из них меньше.

Теорема 2. Пусть х и у натуральные числа, запись которых дана в десятичной системе счисления:

Тогда число х меньше числа у , если выполнено одно из условий:

а) n;

б) n = m, но a n ;

в) n = m, a n = b n , …, a k = b k , но a k-1 .

Пример : 1) если х = 345 , а у = 4678 , то х, так как первое число трехзначное, а второе – четырехзначное.

2) если х = 345, а у = 467, то x, так как в первом из двух значений трехзначных чисел меньше сотен.

3) Если х = 3456, а у = 3467, то x, так как, несмотря на то что в каждом из четырехзначных чисел число тысяч и сотен одинаковое, десятков в числе х меньше, чем в числе у .

Разряды

Если натуральное число х представлено в виде , то числа 1, 10, 10 2 , …, 10 n называют разрядными единицами соответственно первого, второго, …, n +1 разряда, причем 10 единиц одного разряда составляют одну единицу следующего высшего разряда, т.е. отношение соседних разрядов равно 10 – основанию системы счисления.

Три первых разряда в записи числа соединяют одну группу и называют первым классом , или классом единиц . В первый класс входят единицы, десятки и сотни.

Четвертый, пятый и шестой разряды в записи числа образуют второй класс класс тысяч . Затем следует третий класс класс миллионов , состоящий тоже из трех разрядов: седьмого, восьмого и девятого, т.е. из единиц миллионов, десятков миллионов и сотен миллионов.

Последующие три разряда также образуют новый класс и т.д. выделение классов единиц, тысяч, миллионов и т.д. создает удобства для записи и прочтения чисел.

В десятичной СС всем числам можно дать название (имя). это достигается следующим образом: имеются названия первых 10 чисел, затем из них в соответствии с определением десятичной записи и путем прибавления еще немногих слов образуются названия последующих чисел. Так числа второго десятка, представляемые в виде , образуются из соединения первых десяти названий и несколько измененного слова десять ("дцать"):

одиннадцать - один на десять;

двенадцать - два на десять и т.д.

Может быть естественнее было бы говорить "два и десять", но наши предки предпочли говорить "два на десять", что и сохранилось в речи.

Слово "двадцать" обозначает два десятка. Продолжая счет, получим название чисел третьего, четвертого, пятого, шестого и т.д. десятков. Только в трех случаях появляются новые слова: сорок, девяносто и сто. Десять десятков называют сотней . Название чисел второй сотни составляются из слова "сто" и названий чисел первого и последующих десятков. Отсчитав новую сотню, будем иметь две сотни, которые для краткости называют "двести".Затем получим особые названия: триста, четыреста, пятьсот, и т.д. до тех пор, пока не отсчитаем 10 сотен, которые носят название тысяча . После отсчета тысячи тысяч получим число, имеющее наименование миллион (10 6). Далее считаем миллионами до тех пор, пока не дойдем до тысячи миллионов, данное число носит название - миллиард (10 9). Миллион миллионов называется биллионом (10 12). Затем получим триллион (10 15), потом квадриллион (10 18) и т.д.

Таким образом, чтобы назвать все натуральные числа в пределах миллиарда, потребовалось только 16 различных слов: один, два, три, четыре, пять, шесть, семь, восемь, девять, десять, сорок, девяносто, сто, тысяча, миллион, миллиард. Остальные названия чисел (в пределах миллиарда) образуются из основных.


Система счисления – это совокупность символов, используемых для изображения чисел.
Система счисления включает в себя: алфавит, т. е. набор символов для записи чисел, способ записи чисел, способ чтения чисел. Они делятся на два класса: позиционные и непозиционные


Позиционными называются системы счисления, в которых значение цифры зависит от ее места (позиции) в записи числа. Непозиционными называются системы счисления, в которых значение цифры не зависит от ее места (позиции) в записи числа.

Позиционной является привычная для нас в повседневной жизни десятичная система счисления, в которой значение (вес) цифры зависит от ее позиции в записи числа. В числе 1111 одна и та же цифра 1 означает последовательно единицу, десяток, сотню, тысячу.


Все системы счисления, используемые в информатике (двоичная, восьмеричная, шестнадцатеричная и т. д.), являются позиционными. Это важно, т. к. правила образования чисел, перевода из одной системы в другую, выполнения арифметических операций во всех позиционных системах аналогичны.


Непозиционной системой счисления является, например, римская. Правила выполнения арифметических операций в непозиционных системах счисления совсем иные.


В 2-ной системе основание равно 2, т.е. используется всего 2 цифры - 0 и 1. В 8-ной основание равно 8, используются цифры от 0 до 7. В 16-ной системе основание равно 16, используются цифры от 0 до 15. Использование цифр 10, 11, 12, 13, 14, 15 в записи чисел неудобно, т. к. трудно отличить, например, цифру 12 от двух цифр – 1 и 2. Поэтому условились цифры от 10 до 15 обозначать латинскими буквами в порядке алфавита A, B, C, D, E, F.


Позиционные системы счисления – это системы, в которых величина цифры определяется ее положением (позицией) в числе.
Позиция цифр называется разрядом числа. Позиционные системы счисления различают по их основаниям, где основание – это число цифр, используемых в системах счисления.
Например: двоичная система счисления (А2), восьмеричная система счисления (А8) т.д.
Непозиционные системы счисления – это системы, в которых величина цифры не определяется ее положением (позицией) в числе.
Например: римская система счисления (II, V, XII)

Система счисления - совокупность приёмов и правил изображения чисел цифровыми знаками. Системы счисления делятся на непозиционные и позиционные

Непозиционная система счисления - система, в которой, значение символа не зависит от его положения в числе. Непозиционные системы счисления возникли раньше позиционных систем. Они использовались в древности римлянами, египтянами, славя-нами и другими народами. Примером непозиционной системы счисления, дошедшей до наших дней, служит римская система счисления.

Цифры в римской системе обозначаются различными знаками: 1-I; 3-III; 5-V; 10-X; 50-L; 100-C; 500-D; 1000-M. Для записи промежуточных значений существует правило: каждый меньший знак, поставленный справа от большего, прибавляется к его значению, а слева - вычитается из него. Так, IV обозначает 4, VI-6, LX- 60, XC-90 и т.д. Основной недостаток непозиционных систем - большое число различных знаков и сложность выполнения арифметических операций.

Позиционная система счисления - система, в которой значение символа зависит от его места в ряду цифр, изображающих число. Например, в числе 7382 первая цифра слева означает количество тысяч, вторая - количество сотен, третья - количество десятков и четвёртая количество единиц. Позиционные системы счисления (ПСС) более удобны для вычислительных операций, поэтому они получили более широкое распространение. Позиционная система счисления характеризуется основанием.

Основание (базис) ПСС - количество знаков или символов, используемых в разрядах для изображения числа в данной системе счисления. Для ПСС с общим основанием справедливо равенство

Значения первых 16 целых чисел в различных СС

10 2 8 16 10 2 8 16
0 0 0 0 8 1000 10 8
1 1 1 1 9 1001 11 9
2 10 2 2 10 1010 12 А
3 11 3 3 11 1011 13 B
4 100 4 4 12 1100 14 C
5 101 5 5 13 1101 15 D
6 110 6 6 14 1110 16 E
7 111 7 7 15 1111 17 F

Двоичная система счисления. Правила двоичной арифметики

В двоичной системе счисления для записи чисел используется две цифры 0 и 1. Основание системы q=2 записывается как 10 2 = 10

В данной СС любое число может быть представлено последовательностью двоичных цифр. Эта запись соответст-вует сумме степеней цифры 2, взятых с указанными в ней коэффициентами

X=am*2m+am-1*2m-1+…+a1*21+a0*20+… . Например, двоичное число (10101101)2=1*27+0*26+1*25+0*24+1*23+1*22+0*21+1*20=17310

Арифметические операции над двоичными числами отличаются простотой и лег-костью технического выполнения.

Правила двоичной арифметики:

Сложение:

1+1=10 (происходит перенос единицы в старший разряд);

Вычитание:

10-1=1 (происходит заем единицы в старшем разряде);

Умножение:

Двоичная система счисления является основной для использования в ЭВМ, удобной из-за простоты выполнения арифметических операций над двоичными числами. С точки зрения затрат оборудования на создание ЭВМ эта система уступает только троичной системе счисления.

В двоично-кодированных системах счисления, имеющих основания q, отличные от 2 (q>2), каждая цифра числа представляется в двоичной системе счисления. Наибольшее применение в ЭВМ получили шестнадцатеричная система счисления и десятичная двоично-кодированная система счисления.

Восьмеричная и шестнадцатеричная система счисления

Восьмеричная и шестнадцатеричная системы счисления являются вспомогательными системами при подготовке задачи к решению. Удобство их использования состоит в том, что числа соответственно в 3 и 4 раза короче двоичной системы, а перевод в двоичную систему счисления и наоборот несложен и выполняется простым механическим способом.

Число 137,45 8 перевести в двоичную систему счисления. Перевод осуществляется заменой каждой восьмеричной цифры трехзначным двоичным числом (триадой):

т.e. 5F,94 16 =01011111,10010100 2 .Исходя из Число 5F,94 16 в восьмеричной системе счисления имеет вид 137,45 8 .

В десятичной двоично-кодированной системе счисления, часто называемой двоично-десятичной системой, используются десятичные числа. В ней каждую цифру деся-тичного числа (от 0 до 9) заменяют тетрадой.

Число 273,59 10 перевести в двоично-десятичную систему счисления. Перевод осуществим следующим образом:

2 7 3, 5 9
0010 0111 0011 0101 1001

т.е. 273,59 10 = 001001110011,01011001 2-10

Двоично-десятичную запись числа используют непосредственно или как промежу-точную форму записи между обычной десятичной его записью и машинной двоичной. Вычислительная машина сама по специальной программе переводит двоично-десятичные числа в двоичные и обратно.

Правила перевода из одной позиционной системы счисления в другую

Перевод целых чисел

Допустим, число Х из системы счисления с основанием q требуется перевести в систему счисления с основанием р. Перевод осуществляется по следующему правилу. Целую часть числа делим на новое основание р. Полученный от деления первый остаток является младшей цифрой целой части числа с основанием р. Целую часть полученного числа снова делим на основание р. В результате определим второй остаток, равный следующей после младшей цифре числа с основанием р", деление будем производить до тех пор, пока не получим частное меньше делителя. Последнее частное дает старшую цифру числа с основанием р.

Число 26 10 перевести в двоичную систему счисления. Перевод осуществим методом последовательного деления десятичного числа 26 на основание новой системы счисления - 2. Остатки от деления образуют искомое число в двоичной СС. Таким образом:

В результате получаем 26 10 = 11010 2

Число 191 10 перевести в восьмеричную систему счисления. Перевод осуществим методом последовательного деления десятичного числа 191 на основание новой системы счисления - 8. Остатки от деления образуют искомое число в восьмеричной СС.Остатки отделения образуют восьмеричное число

В результате получаем 191 10 = 277 2

Перевод из позиционной СС в десятичную:

Перевод из любой позиционной системы счисления в десятичную осуществляется следующим методом:

1) над каждым разрядом числа расставляют его номер по порядку справа налево, начиная с нуля; 2) цифры числа являются коэффициентами при основании системы счисления в степенях соответствующих номеру разряда; 3) суммируют полученные произведения оснований системы счисления в степенях равных соответствующему номеру разрядов на цифры числа.

Рассмотрим данный алгоритм на примере перевода 1101001 2 в десятичную СС: 1101001 2 = 10 = 105 10

Перевод дробных чисел

Предположим, что правильную дробь X, представленную в системе счисления с основанием q, требуется перевести в систему счисления с основанием р. Перевод осуществляем по следующему правилу. Исходное число умножаем на новое основание р. Получающаяся при этом целая часть произведения является первой искомой цифрой. Дробную часть произведения снова умножаем на основание р, целая часть нового произведения будет второй искомой цифрой. Дробную часть снова умножаем на основание р и т. д.

в результате 0,31 10 = 0,0100111 2

Из этого примера следует, что перевод дробей может представлять собой бесконечный процесс, а результат перевода - приближенный.

Число цифр в числе, представленном в системе счисления с основанием р, определяется из условия, что точность числа в этой системе должна соответствовать точности числа в системе счисления с основанием q.

Перевод двоичной части числа рассмотрим на примере перевода двоичной дроби в десятичную, его можно осуществить сложением всех цифр со степенями 2, соответствующими позициям разрядов исходной двоичной дроби, в которых цифры равны 1. Т.е. осуществляется аналогично переводу целых чисел, но цифры нумеруются слева на право со знаком минус.

0,1110111 2 = 10 = 0,9296875

Перевод произвольных чисел.

Числа, имеющие целую и дробную часть, переводятся в два этапа: вначале целая часть числа, а затем дробная.

Выбор системы счисления

От того, какая система счисления будет использована в ЭВМ, зависят скорость вычислений, емкость памяти, сложность алгоритмов выполнения арифметических операций. При выборе системы счисления учитывается зависимость длины числа и количества устойчивых состояний функциональных элементов (для изображения цифр) от основания системы счисления. Например, при десятичной системе счисления функциональный элемент должен иметь десять устойчивых состояний, а при двоичной системе счисления - два. Кроме того, система счисления должна обладать простотой выполнения арифметических и логических операций.

Десятичная система счисления, привычная для нас в повседневной жизни, не является наилучшей для использования в ЭВМ. Это объясняется тем, что известные в настоящее время функциональные элементы с десятью устойчивыми состояниями (элементы на основе сегнетокерамики, декатроны и др.) имеют низкую скорость переключения и, таким образом, не могут удовлетворять требованиям, предъявляемым к ЭВМ по быстродействию. Поэтому в большинстве случаев в ЭВМ используют двоичные или двоично-кодированные системы счисления. Широкое распространение этих систем обусловлено тем, что элементы ЭВМ способны находиться лишь в одном из двух устойчивых состояний. Например, полупроводниковый транзистор в режиме переключения может быть в открытом или закрытом состоянии, а следовательно, иметь на выходе высокое или низкое напряжение. Ферритовый сердечник в устойчивом состоянии может иметь положительную или отрицательную остаточную магнитную индукцию. Такие элементы принято называть двухпозиционными. Если одно из устойчивых положений элемента принять за 0, а другое - за 1, то достаточно просто изображаются разряды двоичного числа.

Поделитесь с друзьями или сохраните для себя:

Загрузка...