Язык t sql. Назначение языка SQL. Операторы манипулирования данными. Что такое SQL

Язык SQL - Structured Query Language (структурированный язык запро­сов) разработан фирмой IBM в начале 70-х гг. ХХ в. Это современное сред­ство для работы с базами данных, которое применяется в среде реляционных баз данных (создание, поиск, изменение, обновление, передача дан­ных).

Язык SQL утвержден Американским национальным институтом стан­дартов (ANSI) и Международной организацией с стандартов (ISO) в качестве официального стандарта для реляционных баз данных и не зависит от спе­цифики компьютера.

SQL является прежде всего информационно-логическим языком, предназначенным для описания, изменения и извлечения данных, хранимых в реляционных базах данных. SQL нельзя назвать языком программирования

Изначально SQL был основным способом работы пользователя с базой данных и позволял выполнять следующий набор операций:

создание в базе данных новой таблицы;

добавление в таблицу новых записей;

изменение записей;

удаление записей;

выборка записей из одной или нескольких таблиц (в соответствии с заданным условием);

изменение структур таблиц.

Со временем SQL усложнился - обогатился новыми конструкциями, обеспечил возможность описания и управления новыми хранимыми объектами (например, индексы, представления, триггеры и хранимые процедуры) - и стал приобретать черты, свойственные языкам программирования.

При всех своих изменениях SQL остаётся единственным механизмом связи между прикладным программным обеспечением и базой данных. В то же время современные СУБД, а также информационные системы, использующие СУБД, предоставляют пользователю развитые средства визуального построения запросов.

Каждое предложение SQL - это либо запрос данных из базы, либо обращение к базе данных, которое приводит к изменению данных в базе. В соответствии с тем, какие изменения происходят в базе данных, различают следующие типы запросов:

запросы на создание или изменение в базе данных новых или существующих объектов (при этом в запросе описывается тип и структура создаваемого или изменяемого объекта);

запросы на получение данных;

запросы на добавление новых данных (записей);

запросы на удаление данных;

обращения к СУБД.

Основным объектом хранения реляционной базы данных является таблица, поэтому все SQL-запросы - это операции над таблицами. В соответствии с этим, запросы делятся на:

запросы, оперирующие самими таблицами (создание и изменение таблиц);

запросы, оперирующие с отдельными записями (или строками таблиц) или наборами записей.

Каждая таблица описывается в виде перечисления своих полей (столбцов таблицы) с указанием

типа хранимых в каждом поле значений;

связей между таблицами (задание первичных и вторичных ключей);

информации, необходимой для построения индексов.

Запросы первого типа в свою очередь делятся на запросы, предназначенные для создания в базе данных новых таблиц, и на запросы, предназначенные для изменения уже существующих таблиц. Запросы второго типа оперируют со строками, и их можно разделить на запросы следующего вида:

вставка новой строки;

изменение значений полей строки или набора строк;

удаление строки или набора строк.

Самый главный вид запроса - это запрос, возвращающий (пользователю) некоторый набор строк, с которым можно осуществить одну из трёх операций:

просмотреть полученный набор;

изменить все записи набора;

удалить все записи набора.

Таким образом использование SQL сводится, по сути, к формированию всевозможных выборок строк и совершению операций над всеми записями, входящими в набор.

Каждая команда SQL начинается с ключевого слова – глагола, описывающего действие, выполняемое командой, например CREATE (создать). В команде может быть одно или несколько предложений. Предложение описывает данные, с которыми работает команда, или содержит уточняющую информацию о действии, выполняемом командой. Каждое предложение начинается с ключевого слова, например WHERE(где).Одни предложения в команде являются обязательными, другие – нет. Некоторые предложения могут содержать дополнительные ключевые слова, выражения. Многие предложения включают имена таблиц или полей. Имена должны содержать от 1 до 18 символов, начинаться с буквы и не содержать пробелы и специальные символы пунктуации. В качестве имен нельзя использовать ключевые слова.

52. SQL (Structured Query Language) – Структурированный Язык Запросов – это стандартный язык запросов по работе с реляционными базами данных.

SQL не содержит традиционных операторов, управляющих ходом выполнения программ, он содержит только набор стандартных операторов доступа к данным, хранящимся в базе данных.

Язык SQL можно использовать для доступа к базе данных в двух режимах: при интерактивной работе и в прикладных программах .

С помощью SQL пользователь может в интерактивном режиме быстро получить ответы на любые, в том числе достаточно сложные запросы, тогда как для реализации этих запросов на другом языке пришлось бы разрабатывать соответствующую программу. В прикладных программах, написанных на определенных языках программирования, SQL используются как встроенный язык для обращения к базе данных.

Характеризуя язык SQL в целом, можно выделить следующие его черты:

· высокоуровневая структура, напоминающая английский язык;

· независимость от конкретных СУБД;

· наличие развивающихся стандартов;

· возможность выполнения интерактивных запросов извлечения данных и модификации их структуры;

· обеспечение программного доступа к базам данных;

· поддержка архитектуры клиент/сервер;

· расширяемость и поддержка объектно-ориентированных технологий;



· возможность доступа к данным в среде Интернет.

Основные функции языка SQL:

· SQL – язык интерактивных запросов . Пользователи вводят команды SQL в интерактивном режиме для выборки данных и отображения их на экране, а также для внесения изменений в базу данных;

· SQL – язык программирования баз данных . Чтобы получить доступ к базе данных, в прикладные программы вставляются команды SQL;

· SQL – язык администрирования баз данных . Администратор базы данных может использовать SQL для определения структуры базы данных и управления доступом к данным;

· SQL – язык создания приложений клиент/сервер . В прикладных программах SQL используется как средство организации связи по локальной сети с сервером баз данных, в которой хранятся совместно используемые данные и др.

55. Возможности зыка Язык SQL, соответствующий последним стандартам SQL:2003, SQL:1999 представляет собой очень богатый и сложный язык, все возможности которого трудно сразу осознать и тем более понять. Поэтому приходится разбивать язык на уровни. В одной из классификаций, предусмотренных стандартом SQL, этот язык разбивается на «базовый» (entry), «промежуточный» (intermediate) и «полный» (full) уровни. Базовый уровень содержит около сорока команд, которые можно сгруппировать в категории по их функциональному назначению.

CREATE TABLE Сведения (НОМЗ INT, ФИО CHAR(15), ГОД INT, ПОЛ CHAR(3))

DROP TABLE Сведения

ALTER TABLE Сведения (СЕМПОЛ CHAR(10))

CREATE VIEW УспеваемостьМ1 AS SELECT *FROM УспеваемостьWHERE ГРУП= "М-1"

INSERT INTO Сведения VALUES (980101, "ИВАНОВ И. И.", 1980, "МУЖ")

DELETE FROM Сведения WHERE НОМЗ=980201

UPDATE Сведения SET ФИО = "КРАВЦОВА И. И." WHERE НОМЗ=980201

SELECT * FROM Сведения WHERE ФИО="СИДОРОВ С. С." OR ФИО="ПЕТРОВ П. П."

54. Типы данных и выражения Для обращения к реляционной таблице в языке SQL необходимо написать (задать) команду. SELECT (выбрать) ключевое слово сообщает СУБД, какое действие будет выполнять данная команда. Команды запросы начинаются ключевым словом. Кроме SELECT это могут быть слова CREATE- создать, INSERT -вставить, DELETE - удалить,COMMIT –завершить и д.р..

FROM – ключевое слово, подобно SELECT, которое присутствует в каждой команде. Оно сопровождается пробелом, а затем именем таблиц, используемых в качестве источников информации. Имена таблиц, полей должны содержать от 1 до 18 символов, начинаться с буквы и не содержать пробелов или специальных символов.

WHERE ключевое слово, за которым следует предикат –условие, налагаемое на запись в таблице, которому она должна удовлетворять, чтобы пропасть в выборку.

ORDER BY – сортировка выводимых записей (Asc – по возрастанию, Desc – по убыванию. Если не указан вид сортировки, то происходит сортировка по возрастанию).

CHAR(длина) СHARACTER(длина) Строки символов постоянной длины

INTEGER INT Целые числа

SMALLINT Малое целое число

NUMERIC(точность, степень) DECIMAL(точность, степень DEC(точность, степень) Число с фиксированной запятой

FLOAT (точность) Число с плавающей запятой

Double precision числа с плав зап высок точн

Выражения в SQL используются для задания критериев выбора данных или выполнения операций над значениями, которые считаны из базы данных. Выражения представляют собой определенную последовательность полей базы данных, констант, функций, соединенных операторами.

Константы используются для указания конкретных значений данных. Константы с фиксированной запятой , например: 21 -375.18 62.3

Константы с плавающей запятой, например: 1.5Е7 -3.14Е9 2.5Е-6 0.783Е24

Строковые константы должны быть заключены в одинарные кавычки. Примеры таких констант: "Минск" "New York" "Иванов И. И."

Отсутствующее значение (NULL). SQL поддерживает обработку отсутствующих данных с помощью понятия «отсутствующее значение».

Большинство SQL-ориентированных СУБД поддерживает так называемые агрегатные (итоговые) функции . К часто используемым агрегатным функциям можно отнести следующие:

· COUNT – количество значений в столбце таблицы;

· SUM – сумма значений в столбце;

· AVG – среднее арифметическое значений в столбце;

· MAX – максимальное значение в столбце;

· MIN – минимальное значение в столбце.

В выражениях можно использовать следующие типы операторов :

· арифметические : + (сложение), - (вычитание), * (умножение), / (деление);

· отношения : = (равно), > (больше), < (меньше), >= (больше или равно), <= (меньше или равно), <> (не равно);

· логические : AND (логическое "И"), OR (логическое "ИЛИ"), NOT (логическое отрицание);

56. Команды управления транзакциями позволяют обеспечить целостность базы данных.

SQL-транзакция – это несколько последовательных команд SQL, которые должны выполняться как единое целое.

Вязыке SQL обработка транзакций реализована с помощью двух команд – COMMIT и ROLLBACK . Они управляют изменениями, выполненными группой команд. Команда COMMIT сообщает об успешном окончании транзакции. Она информирует СУБД о том, что транзакция завершена, все ее команды выполнены успешно и противоречия в базе данных не возникли. Команда ROLLBACK сообщает о неуспешном окончании транзакции. Она информирует СУБД о том, что пользователь не хочет завершать транзакцию, и СУБД должна отменить все изменения, внесенные в базу данных в результате выполнения транзакции. В этом случае СУБД возвращает базу данных в состояние, в котором она находилась до выполнения транзакции.

Команды COMMIT и ROLLBACK используются в основном в программном режиме, хотя возможно их использование и в интерактивном режиме.

57. К командам управления доступом относятся команды для осуществления административных функций, присваивающих или отменяющих право (привилегию) использовать таблицы базы данных определенным образом. Каждый пользователь базы данных имеет определенные права по отношению к объектам базы.

Права – это те действия с объектом, которые может выполнять пользователь. Права могут меняться с течением времени: старые могут отменяться, новые – добавляться. Предусмотрены следующие права:

· INSERT – право добавлять данные в таблицу;

· UPDATE – право изменять данные таблицы;

· DELETE – право удалять данные из таблицы;

· REFERENCES – право определять первичный ключ.

58 Встраивание языка в прикладные программы.. К встроенным относятся команды, предназначенные для реализации обращения к базе данных из прикладных программ, написанных на определенном языке программирования.

Leran2002 9 апреля 2015 в 12:31

Учебник по языку SQL (DDL, DML) на примере диалекта MS SQL Server. Часть первая

  • SQL ,
  • Microsoft SQL Server
  • Tutorial

О чем данный учебник

Данный учебник представляет собой что-то типа «штампа моей памяти» по языку SQL (DDL, DML), т.е. это информация, которая накопилась по ходу профессиональной деятельности и постоянно хранится в моей голове. Это для меня достаточный минимум, который применяется при работе с базами данных наиболее часто. Если встает необходимость применять более полные конструкции SQL, то я обычно обращаюсь за помощью в библиотеку MSDN расположенную в интернет. На мой взгляд, удержать все в голове очень сложно, да и нет особой необходимости в этом. Но знать основные конструкции очень полезно, т.к. они применимы практически в таком же виде во многих реляционных базах данных, таких как Oracle, MySQL, Firebird. Отличия в основном состоят в типах данных, которые могут отличаться в деталях. Основных конструкций языка SQL не так много, и при постоянной практике они быстро запоминаются. Например, для создания объектов (таблиц, ограничений, индексов и т.п.) достаточно иметь под рукой текстовый редактор среды (IDE) для работы с базой данных, и нет надобности изучать визуальный инструментарий заточенный для работы с конкретным типом баз данных (MS SQL, Oracle, MySQL, Firebird, …). Это удобно и тем, что весь текст находится перед глазами, и не нужно бегать по многочисленным вкладкам для того чтобы создать, например, индекс или ограничение. При постоянной работе с базой данных, создать, изменить, а особенно пересоздать объект при помощи скриптов получается в разы быстрее, чем если это делать в визуальном режиме. Так же в скриптовом режиме (соответственно, при должной аккуратности), проще задавать и контролировать правила наименования объектов (мое субъективное мнение). К тому же скрипты удобно использовать в случае, когда изменения, делаемые в одной базе данных (например, тестовой), необходимо перенести в таком же виде в другую базу (продуктивную).

Язык SQL подразделяется на несколько частей, здесь я рассмотрю 2 наиболее важные его части:
  • DML – Data Manipulation Language (язык манипулирования данными), который содержит следующие конструкции:
    • SELECT – выборка данных
    • INSERT – вставка новых данных
    • UPDATE – обновление данных
    • DELETE – удаление данных
    • MERGE – слияние данных
Т.к. я являюсь практиком, как таковой теории в данном учебнике будет мало, и все конструкции будут объясняться на практических примерах. К тому же я считаю, что язык программирования, а особенно SQL, можно освоить только на практике, самостоятельно пощупав его и поняв, что происходит, когда вы выполняете ту или иную конструкцию.

Данный учебник создан по принципу Step by Step, т.е. необходимо читать его последовательно и желательно сразу же выполняя примеры. Но если по ходу у вас возникает потребность узнать о какой-то команде более детально, то используйте конкретный поиск в интернет, например, в библиотеке MSDN.

При написании данного учебника использовалась база данных MS SQL Server версии 2014, для выполнения скриптов я использовал MS SQL Server Management Studio (SSMS).

Кратко о MS SQL Server Management Studio (SSMS)

SQL Server Management Studio (SSMS) - утилита для Microsoft SQL Server для конфигурирования, управления и администрирования компонентов базы данных. Данная утилита содержит редактор скриптов (который в основном и будет нами использоваться) и графическую программу, которая работает с объектами и настройками сервера. Главным инструментом SQL Server Management Studio является Object Explorer, который позволяет пользователю просматривать, извлекать объекты сервера, а также управлять ими. Данный текст частично позаимствован с википедии.

Для создания нового редактора скрипта используйте кнопку «New Query/Новый запрос»:

Для смены текущей базы данных можно использовать выпадающий список:

Для выполнения определенной команды (или группы команд) выделите ее и нажмите кнопку «Execute/Выполнить» или же клавишу «F5». Если в редакторе в текущий момент находится только одна команда, или же вам необходимо выполнить все команды, то ничего выделять не нужно.

После выполнения скриптов, в особенности создающих объекты (таблицы, столбцы, индексы), чтобы увидеть изменения, используйте обновление из контекстного меню, выделив соответствующую группу (например, Таблицы), саму таблицу или группу Столбцы в ней.

Собственно, это все, что нам необходимо будет знать для выполнения приведенных здесь примеров. Остальное по утилите SSMS несложно изучить самостоятельно.

Немного теории

Реляционная база данных (РБД, или далее в контексте просто БД) представляет из себя совокупность таблиц, связанных между собой. Если говорить грубо, то БД – файл в котором данные хранятся в структурированном виде.

СУБД – Система Управления этими Базами Данных, т.е. это комплекс инструментов для работы с конкретным типом БД (MS SQL, Oracle, MySQL, Firebird, …).

Примечание
Т.к. в жизни, в разговорной речи, мы по большей части говорим: «БД Oracle», или даже просто «Oracle», на самом деле подразумевая «СУБД Oracle», то в контексте данного учебника иногда будет употребляться термин БД. Из контекста, я думаю, будет понятно, о чем именно идет речь.

Таблица представляет из себя совокупность столбцов. Столбцы, так же могут называть полями или колонками, все эти слова будут использоваться как синонимы, выражающие одно и тоже.

Таблица – это главный объект РБД, все данные РБД хранятся построчно в столбцах таблицы. Строки, записи – тоже синонимы.

Для каждой таблицы, как и ее столбцов задаются наименования, по которым впоследствии к ним идет обращение.
Наименование объекта (имя таблицы, имя столбца, имя индекса и т.п.) в MS SQL может иметь максимальную длину 128 символов.

Для справки – в БД ORACLE наименования объектов могут иметь максимальную длину 30 символов. Поэтому для конкретной БД нужно вырабатывать свои правила для наименования объектов, чтобы уложиться в лимит по количеству символов.

SQL - язык позволяющий осуществлять запросы в БД посредством СУБД. В конкретной СУБД, язык SQL может иметь специфичную реализацию (свой диалект).

DDL и DML - подмножество языка SQL:

  • Язык DDL служит для создания и модификации структуры БД, т.е. для создания/изменения/удаления таблиц и связей.
  • Язык DML позволяет осуществлять манипуляции с данными таблиц, т.е. с ее строками. Он позволяет делать выборку данных из таблиц, добавлять новые данные в таблицы, а так же обновлять и удалять существующие данные.

В языке SQL можно использовать 2 вида комментариев (однострочный и многострочный):

Однострочный комментарий
и

/* многострочный комментарий */

Собственно, все для теории этого будет достаточно.

DDL – Data Definition Language (язык описания данных)

Для примера рассмотрим таблицу с данными о сотрудниках, в привычном для человека не являющимся программистом виде:

В данном случае столбцы таблицы имеют следующие наименования: Табельный номер, ФИО, Дата рождения, E-mail, Должность, Отдел.

Каждый из этих столбцов можно охарактеризовать по типу содержащемся в нем данных:

  • Табельный номер – целое число
  • ФИО – строка
  • Дата рождения – дата
  • E-mail – строка
  • Должность – строка
  • Отдел – строка
Тип столбца – характеристика, которая говорит о том какого рода данные может хранить данный столбец.

Для начала будет достаточно запомнить только следующие основные типы данных используемые в MS SQL:

Значение Обозначение в MS SQL Описание
Строка переменной длины varchar(N)
и
nvarchar(N)
При помощи числа N, мы можем указать максимально возможную длину строки для соответствующего столбца. Например, если мы хотим сказать, что значение столбца «ФИО» может содержать максимум 30 символов, то необходимо задать ей тип nvarchar(30).
Отличие varchar от nvarchar заключается в том, что varchar позволяет хранить строки в формате ASCII, где один символ занимает 1 байт, а nvarchar хранит строки в формате Unicode, где каждый символ занимает 2 байта.
Тип varchar стоит использовать только в том случае, если вы на 100% уверены, что в данном поле не потребуется хранить Unicode символы. Например, varchar можно использовать для хранения адресов электронной почты, т.к. они обычно содержат только ASCII символы.
Строка фиксированной длины char(N)
и
nchar(N)
От строки переменной длины данный тип отличается тем, что если длина строка меньше N символов, то она всегда дополняется справа до длины N пробелами и сохраняется в БД в таком виде, т.е. в базе данных она занимает ровно N символов (где один символ занимает 1 байт для char и 2 байта для типа nchar). На моей практике данный тип очень редко находит применение, а если и используется, то он используется в основном в формате char(1), т.е. когда поле определяется одним символом.
Целое число int Данный тип позволяет нам использовать в столбце только целые числа, как положительные, так и отрицательные. Для справки (сейчас это не так актуально для нас) – диапазон чисел который позволяет тип int от -2 147 483 648 до 2 147 483 647. Обычно это основной тип, который используется для задания идентификаторов.
Вещественное или действительное число float Если говорить простым языком, то это числа, в которых может присутствовать десятичная точка (запятая).
Дата date Если в столбце необходимо хранить только Дату, которая состоит из трех составляющих: Числа, Месяца и Года. Например, 15.02.2014 (15 февраля 2014 года). Данный тип можно использовать для столбца «Дата приема», «Дата рождения» и т.п., т.е. в тех случаях, когда нам важно зафиксировать только дату, или, когда составляющая времени нам не важна и ее можно отбросить или если она не известна.
Время time Данный тип можно использовать, если в столбце необходимо хранить только данные о времени, т.е. Часы, Минуты, Секунды и Миллисекунды. Например, 17:38:31.3231603
Например, ежедневное «Время отправления рейса».
Дата и время datetime Данный тип позволяет одновременно сохранить и Дату, и Время. Например, 15.02.2014 17:38:31.323
Для примера это может быть дата и время какого-нибудь события.
Флаг bit Данный тип удобно применять для хранения значений вида «Да»/«Нет», где «Да» будет сохраняться как 1, а «Нет» будет сохраняться как 0.

Так же значение поля, в том случае если это не запрещено, может быть не указано, для этой цели используется ключевое слово NULL.

Для выполнения примеров создадим тестовую базу под названием Test.

Простую базу данных (без указания дополнительных параметров) можно создать, выполнив следующую команду:

CREATE DATABASE Test
Удалить базу данных можно командой (стоит быть очень осторожным с данной командой):

DROP DATABASE Test
Для того, чтобы переключиться на нашу базу данных, можно выполнить команду:

USE Test
Или же выберите базу данных Test в выпадающем списке в области меню SSMS. При работе мною чаще используется именно этот способ переключения между базами.

Теперь в нашей БД мы можем создать таблицу используя описания в том виде как они есть, используя пробелы и символы кириллицы:

CREATE TABLE [Сотрудники]([Табельный номер] int, [ФИО] nvarchar(30), [Дата рождения] date, nvarchar(30), [Должность] nvarchar(30), [Отдел] nvarchar(30))
В данном случае нам придется заключать имена в квадратные скобки […].

Но в базе данных для большего удобства все наименования объектов лучше задавать на латинице и не использовать в именах пробелы. В MS SQL обычно в данном случае каждое слово начинается с прописной буквы, например, для поля «Табельный номер», мы могли бы задать имя PersonnelNumber. Так же в имени можно использовать цифры, например, PhoneNumber1.

На заметку
В некоторых СУБД более предпочтительным может быть следующий формат наименований «PHONE_NUMBER», например, такой формат часто используется в БД ORACLE. Естественно при задании имя поля желательно чтобы оно не совпадало с ключевыми словами используемые в СУБД.

По этой причине можете забыть о синтаксисе с квадратными скобками и удалить таблицу [Сотрудники]:

DROP TABLE [Сотрудники]
Например, таблицу с сотрудниками можно назвать «Employees», а ее полям можно задать следующие наименования:

  • ID – Табельный номер (Идентификатор сотрудника)
  • Name – ФИО
  • Birthday – Дата рождения
  • Email – E-mail
  • Position – Должность
  • Department – Отдел
Очень часто для наименования поля идентификатора используется слово ID.

Теперь создадим нашу таблицу:

CREATE TABLE Employees(ID int, Name nvarchar(30), Birthday date, Email nvarchar(30), Position nvarchar(30), Department nvarchar(30))
Для того, чтобы задать обязательные для заполнения столбцы, можно использовать опцию NOT NULL.

Для уже существующей таблицы поля можно переопределить при помощи следующих команд:

Обновление поля ID ALTER TABLE Employees ALTER COLUMN ID int NOT NULL -- обновление поля Name ALTER TABLE Employees ALTER COLUMN Name nvarchar(30) NOT NULL

На заметку
Общая концепция языка SQL для большинства СУБД остается одинаковой (по крайней мере, об этом я могу судить по тем СУБД, с которыми мне довелось поработать). Отличие DDL в разных СУБД в основном заключаются в типах данных (здесь могут отличаться не только их наименования, но и детали их реализации), так же может немного отличаться и сама специфика реализации языка SQL (т.е. суть команд одна и та же, но могут быть небольшие различия в диалекте, увы, но одного стандарта нет). Владея основами SQL вы легко сможете перейти с одной СУБД на другую, т.к. вам в данном случае нужно будет только разобраться в деталях реализации команд в новой СУБД, т.е. в большинстве случаев достаточно будет просто провести аналогию.

Создание таблицы CREATE TABLE Employees(ID int, -- в ORACLE тип int - это эквивалент(обертка) для number(38) Name nvarchar2(30), -- nvarchar2 в ORACLE эквивалентен nvarchar в MS SQL Birthday date, Email nvarchar2(30), Position nvarchar2(30), Department nvarchar2(30)); -- обновление полей ID и Name (здесь вместо ALTER COLUMN используется MODIFY(…)) ALTER TABLE Employees MODIFY(ID int NOT NULL,Name nvarchar2(30) NOT NULL); -- добавление PK (в данном случае конструкция выглядит как и в MS SQL, она будет показана ниже) ALTER TABLE Employees ADD CONSTRAINT PK_Employees PRIMARY KEY(ID);
Для ORACLE есть отличия в плане реализации типа varchar2, его кодировка зависит настроек БД и текст может сохраняться, например, в кодировке UTF-8. Помимо этого длину поля в ORACLE можно задать как в байтах, так и в символах, для этого используются дополнительные опции BYTE и CHAR, которые указываются после длины поля, например:

NAME varchar2(30 BYTE) -- вместимость поля будет равна 30 байтам NAME varchar2(30 CHAR) -- вместимость поля будет равна 30 символов
Какая опция будет использоваться по умолчанию BYTE или CHAR, в случае простого указания в ORACLE типа varchar2(30), зависит от настроек БД, так же она иногда может задаваться в настройках IDE. В общем порой можно легко запутаться, поэтому в случае ORACLE, если используется тип varchar2 (а это здесь порой оправдано, например, при использовании кодировки UTF-8) я предпочитаю явно прописывать CHAR (т.к. обычно длину строки удобнее считать именно в символах).

Но в данном случае если в таблице уже есть какие-нибудь данные, то для успешного выполнения команд необходимо, чтобы во всех строках таблицы поля ID и Name были обязательно заполнены. Продемонстрируем это на примере, вставим в таблицу данные в поля ID, Position и Department, это можно сделать следующим скриптом:

INSERT Employees(ID,Position,Department) VALUES (1000,N"Директор",N"Администрация"), (1001,N"Программист",N"ИТ"), (1002,N"Бухгалтер",N"Бухгалтерия"), (1003,N"Старший программист",N"ИТ")
В данном случае, команда INSERT также выдаст ошибку, т.к. при вставке мы не указали значения обязательного поля Name.
В случае, если бы у нас в первоначальной таблице уже имелись эти данные, то команда «ALTER TABLE Employees ALTER COLUMN ID int NOT NULL» выполнилась бы успешно, а команда «ALTER TABLE Employees ALTER COLUMN Name int NOT NULL» выдала сообщение об ошибке, что в поле Name имеются NULL (не указанные) значения.

Добавим значения для полю Name и снова зальем данные:


Так же опцию NOT NULL можно использовать непосредственно при создании новой таблицы, т.е. в контексте команды CREATE TABLE.

Сначала удалим таблицу при помощи команды:

DROP TABLE Employees
Теперь создадим таблицу с обязательными для заполнения столбцами ID и Name:

CREATE TABLE Employees(ID int NOT NULL, Name nvarchar(30) NOT NULL, Birthday date, Email nvarchar(30), Position nvarchar(30), Department nvarchar(30))
Можно также после имени столбца написать NULL, что будет означать, что в нем будут допустимы NULL-значения (не указанные), но этого делать не обязательно, так как данная характеристика подразумевается по умолчанию.

Если требуется наоборот сделать существующий столбец необязательным для заполнения, то используем следующий синтаксис команды:

ALTER TABLE Employees ALTER COLUMN Name nvarchar(30) NULL
Или просто:

ALTER TABLE Employees ALTER COLUMN Name nvarchar(30)
Так же данной командой мы можем изменить тип поля на другой совместимый тип, или же изменить его длину. Для примера давайте расширим поле Name до 50 символов:

ALTER TABLE Employees ALTER COLUMN Name nvarchar(50)

Первичный ключ

При создании таблицы желательно, чтобы она имела уникальный столбец или же совокупность столбцов, которая уникальна для каждой ее строки – по данному уникальному значению можно однозначно идентифицировать запись. Такое значение называется первичным ключом таблицы. Для нашей таблицы Employees таким уникальным значением может быть столбец ID (который содержит «Табельный номер сотрудника» - пускай в нашем случае данное значение уникально для каждого сотрудника и не может повторяться).

Создать первичный ключ к уже существующей таблице можно при помощи команды:

ALTER TABLE Employees ADD CONSTRAINT PK_Employees PRIMARY KEY(ID)
Где «PK_Employees» это имя ограничения, отвечающего за первичный ключ. Обычно для наименования первичного ключа используется префикс «PK_» после которого идет имя таблицы.

Если первичный ключ состоит из нескольких полей, то эти поля необходимо перечислить в скобках через запятую:

ALTER TABLE имя_таблицы ADD CONSTRAINT имя_ограничения PRIMARY KEY(поле1,поле2,…)
Стоит отметить, что в MS SQL все поля, которые входят в первичный ключ, должны иметь характеристику NOT NULL.

Так же первичный ключ можно определить непосредственно при создании таблицы, т.е. в контексте команды CREATE TABLE. Удалим таблицу:

DROP TABLE Employees
А затем создадим ее, используя следующий синтаксис:

CREATE TABLE Employees(ID int NOT NULL, Name nvarchar(30) NOT NULL, Birthday date, Email nvarchar(30), Position nvarchar(30), Department nvarchar(30), CONSTRAINT PK_Employees PRIMARY KEY(ID) -- описываем PK после всех полей, как ограничение)
После создания зальем в таблицу данные:

INSERT Employees(ID,Position,Department,Name) VALUES (1000,N"Директор",N"Администрация",N"Иванов И.И."), (1001,N"Программист",N"ИТ",N"Петров П.П."), (1002,N"Бухгалтер",N"Бухгалтерия",N"Сидоров С.С."), (1003,N"Старший программист",N"ИТ",N"Андреев А.А.")
Если первичный ключ в таблице состоит только из значений одного столбца, то можно использовать следующий синтаксис:

CREATE TABLE Employees(ID int NOT NULL CONSTRAINT PK_Employees PRIMARY KEY, -- указываем как характеристику поля Name nvarchar(30) NOT NULL, Birthday date, Email nvarchar(30), Position nvarchar(30), Department nvarchar(30))
На самом деле имя ограничения можно и не задавать, в этом случае ему будет присвоено системное имя (наподобие «PK__Employee__3214EC278DA42077»):

CREATE TABLE Employees(ID int NOT NULL, Name nvarchar(30) NOT NULL, Birthday date, Email nvarchar(30), Position nvarchar(30), Department nvarchar(30), PRIMARY KEY(ID))
Или:

CREATE TABLE Employees(ID int NOT NULL PRIMARY KEY, Name nvarchar(30) NOT NULL, Birthday date, Email nvarchar(30), Position nvarchar(30), Department nvarchar(30))
Но я бы рекомендовал для постоянных таблиц всегда явно задавать имя ограничения, т.к. по явно заданному и понятному имени с ним впоследствии будет легче проводить манипуляции, например, можно произвести его удаление:

ALTER TABLE Employees DROP CONSTRAINT PK_Employees
Но такой краткий синтаксис, без указания имен ограничений, удобно применять при создании временных таблиц БД (имя временной таблицы начинается с # или ##), которые после использования будут удалены.

Подытожим

На данный момент мы рассмотрели следующие команды:
  • CREATE TABLE имя_таблицы (перечисление полей и их типов, ограничений) – служит для создания новой таблицы в текущей БД;
  • DROP TABLE имя_таблицы – служит для удаления таблицы из текущей БД;
  • ALTER TABLE имя_таблицы ALTER COLUMN имя_столбца … – служит для обновления типа столбца или для изменения его настроек (например для задания характеристики NULL или NOT NULL);
  • ALTER TABLE имя_таблицы ADD CONSTRAINT имя_ограничения PRIMARY KEY (поле1, поле2,…) – добавление первичного ключа к уже существующей таблице;
  • ALTER TABLE имя_таблицы DROP CONSTRAINT имя_ограничения – удаление ограничения из таблицы.

Немного про временные таблицы

Вырезка из MSDN. В MS SQL Server существует два вида временных таблиц: локальные (#) и глобальные (##). Локальные временные таблицы видны только их создателям до завершения сеанса соединения с экземпляром SQL Server, как только они впервые созданы. Локальные временные таблицы автоматически удаляются после отключения пользователя от экземпляра SQL Server. Глобальные временные таблицы видны всем пользователям в течение любых сеансов соединения после создания этих таблиц и удаляются, когда все пользователи, ссылающиеся на эти таблицы, отключаются от экземпляра SQL Server.

Временные таблицы создаются в системной базе tempdb, т.е. создавая их мы не засоряем основную базу, в остальном же временные таблицы полностью идентичны обычным таблицам, их так же можно удалить при помощи команды DROP TABLE. Чаще используются локальные (#) временные таблицы.

Для создания временной таблицы можно использовать команду CREATE TABLE:

CREATE TABLE #Temp(ID int, Name nvarchar(30))
Так как временная таблица в MS SQL аналогична обычной таблице, ее соответственно так же можно удалить самому командой DROP TABLE:

DROP TABLE #Temp

Так же временную таблицу (как собственно и обычную таблицу) можно создать и сразу заполнить данными возвращаемые запросом используя синтаксис SELECT … INTO:

SELECT ID,Name INTO #Temp FROM Employees

На заметку
В разных СУБД реализация временных таблиц может отличаться. Например, в СУБД ORACLE и Firebird структура временных таблиц должна быть определена заранее командой CREATE GLOBAL TEMPORARY TABLE с указанием специфики хранения в ней данных, дальше уже пользователь видит ее среди основных таблиц и работает с ней как с обычной таблицей.

Нормализация БД – дробление на подтаблицы (справочники) и определение связей

Наша текущая таблица Employees имеет недостаток в том, что в полях Position и Department пользователь может ввести любой текст, что в первую очередь чревато ошибками, так как он у одного сотрудника может указать в качестве отдела просто «ИТ», а у второго сотрудника, например, ввести «ИТ-отдел», у третьего «IT». В итоге будет непонятно, что имел ввиду пользователь, т.е. являются ли данные сотрудники работниками одного отдела, или же пользователь описался и это 3 разных отдела? А тем более, в этом случае, мы не сможем правильно сгруппировать данные для какого-то отчета, где, может требоваться показать количество сотрудников в разрезе каждого отдела.

Второй недостаток заключается в объеме хранения данной информации и ее дублированием, т.е. для каждого сотрудника указывается полное наименование отдела, что требует в БД места для хранения каждого символа из названия отдела.

Третий недостаток – сложность обновления данных полей, в случае если изменится название какой-то должности, например, если потребуется переименовать должность «Программист», на «Младший программист». В данном случае нам придется вносить изменения в каждую строчку таблицы, у которой Должность равняется «Программист».

Чтобы избежать данных недостатков и применяется, так называемая, нормализация базы данных – дробление ее на подтаблицы, таблицы справочники. Не обязательно лезть в дебри теории и изучать что из себя представляют нормальные формы, достаточно понимать суть нормализации.

Давайте создадим 2 таблицы справочники «Должности» и «Отделы», первую назовем Positions, а вторую соответственно Departments:

CREATE TABLE Positions(ID int IDENTITY(1,1) NOT NULL CONSTRAINT PK_Positions PRIMARY KEY, Name nvarchar(30) NOT NULL) CREATE TABLE Departments(ID int IDENTITY(1,1) NOT NULL CONSTRAINT PK_Departments PRIMARY KEY, Name nvarchar(30) NOT NULL)
Заметим, что здесь мы использовали новую опцию IDENTITY, которая говорит о том, что данные в столбце ID будут нумероваться автоматически, начиная с 1, с шагом 1, т.е. при добавлении новых записей им последовательно будут присваиваться значения 1, 2, 3, и т.д. Такие поля обычно называют автоинкрементными. В таблице может быть определено только одно поле со свойством IDENTITY и обычно, но необязательно, такое поле является первичным ключом для данной таблицы.

На заметку
В разных СУБД реализация полей со счетчиком может делаться по своему. В MySQL, например, такое поле определяется при помощи опции AUTO_INCREMENT. В ORACLE и Firebird раньше данную функциональность можно было съэмулировать при помощи использования последовательностей (SEQUENCE). Но насколько я знаю в ORACLE сейчас добавили опцию GENERATED AS IDENTITY.

Давайте заполним эти таблицы автоматически, на основании текущих данных записанных в полях Position и Department таблицы Employees:

Заполняем поле Name таблицы Positions, уникальными значениями из поля Position таблицы Employees INSERT Positions(Name) SELECT DISTINCT Position FROM Employees WHERE Position IS NOT NULL -- отбрасываем записи у которых позиция не указана
То же самое проделаем для таблицы Departments:

INSERT Departments(Name) SELECT DISTINCT Department FROM Employees WHERE Department IS NOT NULL
Если теперь мы откроем таблицы Positions и Departments, то увидим пронумерованный набор значений по полю ID:

SELECT * FROM Positions

SELECT * FROM Departments

Данные таблицы теперь и будут играть роль справочников для задания должностей и отделов. Теперь мы будем ссылаться на идентификаторы должностей и отделов. В первую очередь создадим новые поля в таблице Employees для хранения данных идентификаторов:

Добавляем поле для ID должности ALTER TABLE Employees ADD PositionID int -- добавляем поле для ID отдела ALTER TABLE Employees ADD DepartmentID int
Тип ссылочных полей должен быть каким же, как и в справочниках, в данном случае это int.

Так же добавить в таблицу сразу несколько полей можно одной командой, перечислив поля через запятую:

ALTER TABLE Employees ADD PositionID int, DepartmentID int
Теперь пропишем ссылки (ссылочные ограничения - FOREIGN KEY) для этих полей, для того чтобы пользователь не имел возможности записать в данные поля, значения, отсутствующие среди значений ID находящихся в справочниках.

ALTER TABLE Employees ADD CONSTRAINT FK_Employees_PositionID FOREIGN KEY(PositionID) REFERENCES Positions(ID)
И то же самое сделаем для второго поля:

ALTER TABLE Employees ADD CONSTRAINT FK_Employees_DepartmentID FOREIGN KEY(DepartmentID) REFERENCES Departments(ID)
Теперь пользователь в данные поля сможет занести только значения ID из соответствующего справочника. Соответственно, чтобы использовать новый отдел или должность, он первым делом должен будет добавить новую запись в соответствующий справочник. Т.к. должности и отделы теперь хранятся в справочниках в одном единственном экземпляре, то чтобы изменить название, достаточно изменить его только в справочнике.

Имя ссылочного ограничения, обычно является составным, оно состоит из префикса «FK_», затем идет имя таблицы и после знака подчеркивания идет имя поля, которое ссылается на идентификатор таблицы-справочника.

Идентификатор (ID) обычно является внутренним значением, которое используется только для связей и какое значение там хранится, в большинстве случаев абсолютно безразлично, поэтому не нужно пытаться избавиться от дырок в последовательности чисел, которые возникают по ходу работы с таблицей, например, после удаления записей из справочника.

ALTER TABLE таблица ADD CONSTRAINT имя_ограничения FOREIGN KEY(поле1,поле2,…) REFERENCES таблица_справочник(поле1,поле2,…)
В данном случае в таблице «таблица_справочник» первичный ключ представлен комбинацией из нескольких полей (поле1, поле2,…).

Собственно, теперь обновим поля PositionID и DepartmentID значениями ID из справочников. Воспользуемся для этой цели DML командой UPDATE:

UPDATE e SET PositionID=(SELECT ID FROM Positions WHERE Name=e.Position), DepartmentID=(SELECT ID FROM Departments WHERE Name=e.Department) FROM Employees e
Посмотрим, что получилось, выполнив запрос:

SELECT * FROM Employees

Всё, поля PositionID и DepartmentID заполнены соответствующие должностям и отделам идентификаторами надобности в полях Position и Department в таблице Employees теперь нет, можно удалить эти поля:

ALTER TABLE Employees DROP COLUMN Position,Department
Теперь таблица у нас приобрела следующий вид:

SELECT * FROM Employees

ID Name Birthday Email PositionID DepartmentID
1000 Иванов И.И. NULL NULL 2 1
1001 Петров П.П. NULL NULL 3 3
1002 Сидоров С.С. NULL NULL 1 2
1003 Андреев А.А. NULL NULL 4 3

Т.е. мы в итоге избавились от хранения избыточной информации. Теперь, по номерам должности и отдела можем однозначно определить их названия, используя значения в таблицах-справочниках:

SELECT e.ID,e.Name,p.Name PositionName,d.Name DepartmentName FROM Employees e LEFT JOIN Departments d ON d.ID=e.DepartmentID LEFT JOIN Positions p ON p.ID=e.PositionID

В инспекторе объектов мы можем увидеть все объекты, созданные для в данной таблицы. Отсюда же можно производить разные манипуляции с данными объектами – например, переименовывать или удалять объекты.

Так же стоит отметить, что таблица может ссылаться сама на себя, т.е. можно создать рекурсивную ссылку. Для примера добавим в нашу таблицу с сотрудниками еще одно поле ManagerID, которое будет указывать на сотрудника, которому подчиняется данный сотрудник. Создадим поле:

ALTER TABLE Employees ADD ManagerID int
В данном поле допустимо значение NULL, поле будет пустым, если, например, над сотрудником нет вышестоящих.

Теперь создадим FOREIGN KEY на таблицу Employees:

ALTER TABLE Employees ADD CONSTRAINT FK_Employees_ManagerID FOREIGN KEY (ManagerID) REFERENCES Employees(ID)
Давайте, теперь создадим диаграмму и посмотрим, как выглядят на ней связи между нашими таблицами:

В результате мы должны увидеть следующую картину (таблица Employees связана с таблицами Positions и Depertments, а так же ссылается сама на себя):

Напоследок стоит сказать, что ссылочные ключи могут включать дополнительные опции ON DELETE CASCADE и ON UPDATE CASCADE, которые говорят о том, как вести себя при удалении или обновлении записи, на которую есть ссылки в таблице-справочнике. Если эти опции не указаны, то мы не можем изменить ID в таблице справочнике у той записи, на которую есть ссылки из другой таблицы, так же мы не сможем удалить такую запись из справочника, пока не удалим все строки, ссылающиеся на эту запись или, же обновим в этих строках ссылки на другое значение.

Для примера пересоздадим таблицу с указанием опции ON DELETE CASCADE для FK_Employees_DepartmentID:

DROP TABLE Employees CREATE TABLE Employees(ID int NOT NULL, Name nvarchar(30), Birthday date, Email nvarchar(30), PositionID int, DepartmentID int, ManagerID int, CONSTRAINT PK_Employees PRIMARY KEY (ID), CONSTRAINT FK_Employees_DepartmentID FOREIGN KEY(DepartmentID) REFERENCES Departments(ID) ON DELETE CASCADE, CONSTRAINT FK_Employees_PositionID FOREIGN KEY(PositionID) REFERENCES Positions(ID), CONSTRAINT FK_Employees_ManagerID FOREIGN KEY (ManagerID) REFERENCES Employees(ID)) INSERT Employees (ID,Name,Birthday,PositionID,DepartmentID,ManagerID)VALUES (1000,N"Иванов И.И.","19550219",2,1,NULL), (1001,N"Петров П.П.","19831203",3,3,1003), (1002,N"Сидоров С.С.","19760607",1,2,1000), (1003,N"Андреев А.А.","19820417",4,3,1000)
Удалим отдел с идентификатором 3 из таблицы Departments:

DELETE Departments WHERE ID=3
Посмотрим на данные таблицы Employees:

SELECT * FROM Employees

ID Name Birthday Email PositionID DepartmentID ManagerID
1000 Иванов И.И. 1955-02-19 NULL 2 1 NULL
1002 Сидоров С.С. 1976-06-07 NULL 1 2 1000

Как видим, данные по отделу 3 из таблицы Employees так же удалились.

Опция ON UPDATE CASCADE ведет себя аналогично, но действует она при обновлении значения ID в справочнике. Например, если мы поменяем ID должности в справочнике должностей, то в этом случае будет производиться обновление DepartmentID в таблице Employees на новое значение ID которое мы задали в справочнике. Но в данном случае это продемонстрировать просто не получится, т.к. у колонки ID в таблице Departments стоит опция IDENTITY, которая не позволит нам выполнить следующий запрос (сменить идентификатор отдела 3 на 30):

UPDATE Departments SET ID=30 WHERE ID=3
Главное понять суть этих 2-х опций ON DELETE CASCADE и ON UPDATE CASCADE. Я применяю эти опции очень в редких случаях и рекомендую хорошо подумать, прежде чем указывать их в ссылочном ограничении, т.к. при нечаянном удалении записи из таблицы справочника это может привести к большим проблемам и создать цепную реакцию.

Восстановим отдел 3:

Даем разрешение на добавление/изменение IDENTITY значения SET IDENTITY_INSERT Departments ON INSERT Departments(ID,Name) VALUES(3,N"ИТ") -- запрещаем добавление/изменение IDENTITY значения SET IDENTITY_INSERT Departments OFF
Полностью очистим таблицу Employees при помощи команды TRUNCATE TABLE:

TRUNCATE TABLE Employees
И снова перезальем в нее данные используя предыдущую команду INSERT:

INSERT Employees (ID,Name,Birthday,PositionID,DepartmentID,ManagerID)VALUES (1000,N"Иванов И.И.","19550219",2,1,NULL), (1001,N"Петров П.П.","19831203",3,3,1003), (1002,N"Сидоров С.С.","19760607",1,2,1000), (1003,N"Андреев А.А.","19820417",4,3,1000)

Подытожим

На данным момент к нашим знаниям добавилось еще несколько команд DDL:
  • Добавление свойства IDENTITY к полю – позволяет сделать это поле автоматически заполняемым (полем-счетчиком) для таблицы;
  • ALTER TABLE имя_таблицы ADD перечень_полей_с_характеристиками – позволяет добавить новые поля в таблицу;
  • ALTER TABLE имя_таблицы DROP COLUMN перечень_полей – позволяет удалить поля из таблицы;
  • ALTER TABLE имя_таблицы ADD CONSTRAINT имя_ограничения FOREIGN KEY (поля) REFERENCES таблица_справочник(поля) – позволяет определить связь между таблицей и таблицей справочником.

Прочие ограничения – UNIQUE, DEFAULT, CHECK

При помощи ограничения UNIQUE можно сказать что значения для каждой строки в данном поле или в наборе полей должно быть уникальным. В случае таблицы Employees, такое ограничение мы можем наложить на поле Email. Только предварительно заполним Email значениями, если они еще не определены:

UPDATE Employees SET Email="[email protected]" WHERE ID=1000 UPDATE Employees SET Email="[email protected]" WHERE ID=1001 UPDATE Employees SET Email="[email protected]" WHERE ID=1002 UPDATE Employees SET Email="[email protected]" WHERE ID=1003
А теперь можно наложить на это поле ограничение-уникальности:

ALTER TABLE Employees ADD CONSTRAINT UQ_Employees_Email UNIQUE(Email)
Теперь пользователь не сможет внести один и тот же E-Mail у нескольких сотрудников.

Ограничение уникальности обычно именуется следующим образом – сначала идет префикс «UQ_», далее название таблицы и после знака подчеркивания идет имя поля, на которое накладывается данное ограничение.

Соответственно если уникальной в разрезе строк таблицы должна быть комбинация полей, то перечисляем их через запятую:

ALTER TABLE имя_таблицы ADD CONSTRAINT имя_ограничения UNIQUE(поле1,поле2,…)
При помощи добавления к полю ограничения DEFAULT мы можем задать значение по умолчанию, которое будет подставляться в случае, если при вставке новой записи данное поле не будет перечислено в списке полей команды INSERT. Данное ограничение можно задать непосредственно при создании таблицы.

Давайте добавим в таблицу Employees новое поле «Дата приема» и назовем его HireDate и скажем что значение по умолчанию у данного поля будет текущая дата:

ALTER TABLE Employees ADD HireDate date NOT NULL DEFAULT SYSDATETIME()
Или если столбец HireDate уже существует, то можно использовать следующий синтаксис:

ALTER TABLE Employees ADD DEFAULT SYSDATETIME() FOR HireDate
Здесь я не указал имя ограничения, т.к. в случае DEFAULT у меня сложилось мнение, что это не столь критично. Но если делать по-хорошему, то, думаю, не нужно лениться и стоит задать нормальное имя. Делается это следующим образом:

ALTER TABLE Employees ADD CONSTRAINT DF_Employees_HireDate DEFAULT SYSDATETIME() FOR HireDate
Та как данного столбца раньше не было, то при его добавлении в каждую запись в поле HireDate будет вставлено текущее значение даты.

При добавлении новой записи, текущая дата так же будет вставлена автоматом, конечно если мы ее явно не зададим, т.е. не укажем в списке столбцов. Покажем это на примере, не указав поле HireDate в перечне добавляемых значений:

INSERT Employees(ID,Name,Email)VALUES(1004,N"Сергеев С.С.","[email protected]")
Посмотрим, что получилось:

SELECT * FROM Employees

ID Name Birthday Email PositionID DepartmentID ManagerID HireDate
1000 Иванов И.И. 1955-02-19 [email protected] 2 1 NULL 2015-04-08
1001 Петров П.П. 1983-12-03 [email protected] 3 4 1003 2015-04-08
1002 Сидоров С.С. 1976-06-07 [email protected] 1 2 1000 2015-04-08
1003 Андреев А.А. 1982-04-17 [email protected] 4 3 1000 2015-04-08
1004 Сергеев С.С. NULL [email protected] NULL NULL NULL 2015-04-08

Проверочное ограничение CHECK используется в том случае, когда необходимо осуществить проверку вставляемых в поле значений. Например, наложим данное ограничение на поле табельный номер, которое у нас является идентификатором сотрудника (ID). При помощи данного ограничения скажем, что табельные номера должны иметь значение от 1000 до 1999:

ALTER TABLE Employees ADD CONSTRAINT CK_Employees_ID CHECK(ID BETWEEN 1000 AND 1999)
Ограничение обычно именуется так же, сначала идет префикс «CK_», затем имя таблицы и имя поля, на которое наложено это ограничение.

Попробуем вставить недопустимую запись для проверки, что ограничение работает (мы должны получить соответствующую ошибку):

INSERT Employees(ID,Email) VALUES(2000,"[email protected]")
А теперь изменим вставляемое значение на 1500 и убедимся, что запись вставится:

INSERT Employees(ID,Email) VALUES(1500,"[email protected]")
Можно так же создать ограничения UNIQUE и CHECK без указания имени:

ALTER TABLE Employees ADD UNIQUE(Email) ALTER TABLE Employees ADD CHECK(ID BETWEEN 1000 AND 1999)
Но это не очень хорошая практика и лучше задавать имя ограничения в явном виде, т.к. чтобы разобраться потом, что будет сложнее, нужно будет открывать объект и смотреть, за что он отвечает.

При хорошем наименовании много информации об ограничении можно узнать непосредственно по его имени.

И, соответственно, все эти ограничения можно создать сразу же при создании таблицы, если ее еще нет. Удалим таблицу:

DROP TABLE Employees
И пересоздадим ее со всеми созданными ограничениями одной командой CREATE TABLE:

CREATE TABLE Employees(ID int NOT NULL, Name nvarchar(30), Birthday date, Email nvarchar(30), PositionID int, DepartmentID int, HireDate date NOT NULL DEFAULT SYSDATETIME(), -- для DEFAULT я сделаю исключение CONSTRAINT PK_Employees PRIMARY KEY (ID), CONSTRAINT FK_Employees_DepartmentID FOREIGN KEY(DepartmentID) REFERENCES Departments(ID), CONSTRAINT FK_Employees_PositionID FOREIGN KEY(PositionID) REFERENCES Positions(ID), CONSTRAINT UQ_Employees_Email UNIQUE (Email), CONSTRAINT CK_Employees_ID CHECK (ID BETWEEN 1000 AND 1999))

INSERT Employees (ID,Name,Birthday,Email,PositionID,DepartmentID)VALUES (1000,N"Иванов И.И.","19550219","[email protected]",2,1), (1001,N"Петров П.П.","19831203","[email protected]",3,3), (1002,N"Сидоров С.С.","19760607","[email protected]",1,2), (1003,N"Андреев А.А.","19820417","[email protected]",4,3)

Немного про индексы, создаваемые при создании ограничений PRIMARY KEY и UNIQUE

Как можно увидеть на скриншоте выше, при создании ограничений PRIMARY KEY и UNIQUE автоматически создались индексы с такими же названиями (PK_Employees и UQ_Employees_Email). По умолчанию индекс для первичного ключа создается как CLUSTERED, а для всех остальных индексов как NONCLUSTERED. Стоит сказать, что понятие кластерного индекса есть не во всех СУБД. Таблица может иметь только один кластерный (CLUSTERED) индекс. CLUSTERED – означает, что записи таблицы будут сортироваться по этому индексу, так же можно сказать, что этот индекс имеет непосредственный доступ ко всем данным таблицы. Это так сказать главный индекс таблицы. Если сказать еще грубее, то это индекс, прикрученный к таблице. Кластерный индекс – это очень мощное средство, которое может помочь при оптимизации запросов, пока просто запомним это. Если мы хотим сказать, чтобы кластерный индекс использовался не в первичном ключе, а для другого индекса, то при создании первичного ключа мы должны указать опцию NONCLUSTERED:

ALTER TABLE имя_таблицы ADD CONSTRAINT имя_ограничения PRIMARY KEY NONCLUSTERED(поле1,поле2,…)
Для примера сделаем индекс ограничения PK_Employees некластерным, а индекс ограничения UQ_Employees_Email кластерным. Первым делом удалим данные ограничения:

ALTER TABLE Employees DROP CONSTRAINT PK_Employees ALTER TABLE Employees DROP CONSTRAINT UQ_Employees_Email
А теперь создадим их с опциями CLUSTERED и NONCLUSTERED:

ALTER TABLE Employees ADD CONSTRAINT PK_Employees PRIMARY KEY NONCLUSTERED (ID) ALTER TABLE Employees ADD CONSTRAINT UQ_Employees_Email UNIQUE CLUSTERED (Email)
Теперь, выполнив выборку из таблицы Employees, мы увидим, что записи отсортировались по кластерному индексу UQ_Employees_Email:

SELECT * FROM Employees

ID Name Birthday Email PositionID DepartmentID HireDate
1003 Андреев А.А. 1982-04-17 [email protected] 4 3 2015-04-08
1000 Иванов И.И. 1955-02-19 [email protected] 2 1 2015-04-08
1001 Петров П.П. 1983-12-03 [email protected] 3 3 2015-04-08
1002 Сидоров С.С. 1976-06-07 [email protected] 1 2 2015-04-08

До этого, когда кластерным индексом был индекс PK_Employees, записи по умолчанию сортировались по полю ID.

Но в данном случае это всего лишь пример, который показывает суть кластерного индекса, т.к. скорее всего к таблице Employees будут делаться запросы по полю ID и в каких-то случаях, возможно, она сама будет выступать в роли справочника.

Для справочников обычно целесообразно, чтобы кластерный индекс был построен по первичному ключу, т.к. в запросах мы часто ссылаемся на идентификатор справочника для получения, например, наименования (Должности, Отдела). Здесь вспомним, о чем я писал выше, что кластерный индекс имеет прямой доступ к строкам таблицы, а отсюда следует, что мы можем получить значение любого столбца без дополнительных накладных расходов.

Кластерный индекс выгодно применять к полям, по которым выборка идет наиболее часто.

Иногда в таблицах создают ключ по суррогатному полю, вот в этом случае бывает полезно сохранить опцию CLUSTERED индекс для более подходящего индекса и указать опцию NONCLUSTERED при создании суррогатного первичного ключа.

Подытожим

На данном этапе мы познакомились со всеми видами ограничений, в их самом простом виде, которые создаются командой вида «ALTER TABLE имя_таблицы ADD CONSTRAINT имя_ограничения …»:
  • PRIMARY KEY – первичный ключ;
  • FOREIGN KEY – настройка связей и контроль ссылочной целостности данных;
  • UNIQUE – позволяет создать уникальность;
  • CHECK – позволяет осуществлять корректность введенных данных;
  • DEFAULT – позволяет задать значение по умолчанию;
  • Так же стоит отметить, что все ограничения можно удалить, используя команду «ALTER TABLE имя_таблицы DROP CONSTRAINT имя_ограничения».
Так же мы частично затронули тему индексов и разобрали понятие кластерный (CLUSTERED ) и некластерный (NONCLUSTERED ) индекс.

Создание самостоятельных индексов

Под самостоятельностью здесь имеются в виду индексы, которые создаются не для ограничения PRIMARY KEY или UNIQUE.

Индексы по полю или полям можно создавать следующей командой:

CREATE INDEX IDX_Employees_Name ON Employees(Name)
Так же здесь можно указать опции CLUSTERED, NONCLUSTERED, UNIQUE, а так же можно указать направление сортировки каждого отдельного поля ASC (по умолчанию) или DESC:

CREATE UNIQUE NONCLUSTERED INDEX UQ_Employees_EmailDesc ON Employees(Email DESC)
При создании некластерного индекса опцию NONCLUSTERED можно отпустить, т.к. она подразумевается по умолчанию, здесь она показана просто, чтобы указать позицию опции CLUSTERED или NONCLUSTERED в команде.

Удалить индекс можно следующей командой:

DROP INDEX IDX_Employees_Name ON Employees
Простые индексы так же, как и ограничения, можно создать в контексте команды CREATE TABLE.

Для примера снова удалим таблицу:

DROP TABLE Employees
И пересоздадим ее со всеми созданными ограничениями и индексами одной командой CREATE TABLE:

CREATE TABLE Employees(ID int NOT NULL, Name nvarchar(30), Birthday date, Email nvarchar(30), PositionID int, DepartmentID int, HireDate date NOT NULL CONSTRAINT DF_Employees_HireDate DEFAULT SYSDATETIME(), ManagerID int, CONSTRAINT PK_Employees PRIMARY KEY (ID), CONSTRAINT FK_Employees_DepartmentID FOREIGN KEY(DepartmentID) REFERENCES Departments(ID), CONSTRAINT FK_Employees_PositionID FOREIGN KEY(PositionID) REFERENCES Positions(ID), CONSTRAINT FK_Employees_ManagerID FOREIGN KEY (ManagerID) REFERENCES Employees(ID), CONSTRAINT UQ_Employees_Email UNIQUE(Email), CONSTRAINT CK_Employees_ID CHECK(ID BETWEEN 1000 AND 1999), INDEX IDX_Employees_Name(Name))
Напоследок вставим в таблицу наших сотрудников:

INSERT Employees (ID,Name,Birthday,Email,PositionID,DepartmentID,ManagerID)VALUES (1000,N"Иванов И.И.","19550219","[email protected]",2,1,NULL), (1001,N"Петров П.П.","19831203","[email protected]",3,3,1003), (1002,N"Сидоров С.С.","19760607","[email protected]",1,2,1000), (1003,N"Андреев А.А.","19820417","[email protected]",4,3,1000)
Дополнительно стоит отметить, что в некластерный индекс можно включать значения при помощи указания их в INCLUDE. Т.е. в данном случае INCLUDE-индекс чем-то будет напоминать кластерный индекс, только теперь не индекс прикручен к таблице, а необходимые значения прикручены к индексу. Соответственно, такие индексы могут очень повысить производительность запросов на выборку (SELECT), если все перечисленные поля имеются в индексе, то возможно обращений к таблице вообще не понадобится. Но это естественно повышает размер индекса, т.к. значения перечисленных полей дублируются в индексе.

Вырезка из MSDN. Общий синтаксис команды для создания индексов

CREATE [ UNIQUE ] [ CLUSTERED | NONCLUSTERED ] INDEX index_name ON (column [ ASC | DESC ] [ ,...n ]) [ INCLUDE (column_name [ ,...n ]) ]

Подытожим

Индексы могут повысить скорость выборки данных (SELECT), но индексы уменьшают скорость модификации данных таблицы, т.к. после каждой модификации системе будет необходимо перестроить все индексы для конкретной таблицы.

Желательно в каждом случае найти оптимальное решение, золотую середину, чтобы и производительность выборки, так и модификации данных была на должном уровне. Стратегия по созданию индексов и их количества может зависеть от многих факторов, например, насколько часто изменяются данные в таблице.

Заключение по DDL

Как можно увидеть, язык DDL не так сложен, как может показаться на первый взгляд. Здесь я смог показать практически все его основные конструкции, оперируя всего тремя таблицами.

Главное - понять суть, а остальное дело практики.

Удачи вам в освоении этого замечательного языка под названием SQL.

Язык SQL

Итак, мы в общих чертах познакомились с основными понятиями теории баз данных , установили и настроили для работы MySQL . Теперь самое время научиться манипулировать данными, хранящимися в базах данных . Для этого нам понадобится SQL – структурированный язык запросов. Этот язык дает возможность создавать, редактировать и удалять информацию, хранящуюся в базах данных , создавать новые базы данных и многое другое. SQL является стандартом ANSI (Американский национальный институт стандартов) и ISO (Международная организация по стандартизации).

Немного истории

Первый международный стандарт языка SQL был принят в 1989 г., его часто называют SQL /89 . Среди недостатков этого стандарта выделяют в первую очередь то, что многие важные свойства он устанавливал как определяемые в реализации. Отсюда произошло множество расхождений в реализациях языка разными производителями. Кроме того, высказывались претензии по поводу отсутствия в этом стандарте упоминаний о практических аспектах языка, таких как его встраивание в язык программирования Си.

Следующий международный стандарт языка SQL был принят в конце 1992 г. И стал называться SQL /92 . Он получился гораздо более точным и полным, чем SQL /89 , хотя и не был лишен недостатков. В настоящее время большинство систем почти полностью реализуют этот стандарт. Однако, как известно, прогресс не остановишь, и в 1999 году появился новый стандарт SQL :1999, также известный как SQL3 . SQL3 характеризуется как «объектно-ориентированный SQL » и является основой нескольких объектно-реляционных систем управления базами данных (например, ORACLE8 компании Oracle, Universal Server компании Informix и DB2 Universal Database компании IBM). Этот стандарт является не просто слиянием SQL -92 и объектной технологии. Он содержит ряд расширений традиционного SQL , а сам документ составлен таким образом, чтобы добиться более эффективной работы в области стандартизации в будущем.

Если говорить о MySQL , то она соответствует начальному уровню SQL92, содержит несколько расширений этого стандарта и стремится к полной поддержке стандарта ANSI SQL99, но без ущерба для скорости и качества кода.

Далее, говоря об основах языка SQL , будем придерживаться его реализации в СУБД MySQL .

Основные операторы языка SQL

Функции любой СУБД включают:

  1. создание, удаление, изменение базы данных (БД);
  2. добавление, изменение, удаление, назначение прав пользователя;
  3. внесение, удаление и изменение данных в БД (таблиц и записей);
  4. выборку данных из БД.

К первым двум функциям имеют доступ только администраторы СУБД или привилегированные пользователи. Рассмотрим, как решаются последние две задачи (на самом деле это семь задач).

Прежде чем что-либо делать с данными, нужно создать таблицы, в которых эти данные будут храниться, научиться изменять структуру этих таблиц и удалять их, если потребуется. Для этого в языке SQL существуют операторы CREATE TABLE , ALTER TABLE и DROP TABLE .

Оператор CREATE TABLE

mysql>CREATE TABLE Persons (id INT PRIMARY KEY AUTO_INCREMENT, first_name VARCHAR(50), last_name VARCHAR(100), death_date INT, description TEXT, photo INT, citienship CHAR(50) DEFAULT "Russia"); Пример 10.1. Создание таблицы Persons

С помощью специфичной для MySql команды SHOW можно просмотреть существующие базы данных , таблицы в базе данных и поля в таблице.

Показать все базы данных :

mysql>SHOW databases;

Сделать текущей базу данных book и показать все таблицы в ней:

mysql>use book; mysql>show tables;

Показать все столбцы в таблице Persons :

mysql> show columns from Persons;

Оператор DROP TABLE

Оператор DROP TABLE удаляет одну или несколько таблиц. Все табличные данные и определения удаляются, так что при работе с этой командой следует соблюдать осторожность.

Синтаксис:

DROP TABLE имя_таблицы [, имя_таблицы,...]

В версии MySQL 3.22 и более поздних можно использовать ключевые слова IF EXISTS , чтобы предупредить ошибку, если указанные таблицы не существуют.

Опции RESTRICT и CASCADE позволяют упростить перенос программы с других СУБД . В данный момент они не задействованы.

mysql> DROP TABLE IF EXISTS Persons, Artifacts, test; Пример 10.2. Использование оператора DROP TABLE

Оператор ALTER TABLE

Оператор ALTER TABLE обеспечивает возможность изменять структуру существующей таблицы. Например, можно добавлять или удалять столбцы, создавать или уничтожать индексы или переименовывать столбцы либо саму таблицу. Можно также изменять комментарий для таблицы и ее тип.

Синтаксис:

ALTER TABLE имя_таблицы alter_specification [, alter_specification ...]

Можно производить следующие изменения в таблице (все они записываются в alter_specification ):

  • добавление поля:

    ADD определение_столбца

    ADD (определение_столбца, определение_столбца,...)

  • добавление индексов:

    ADD INDEX [имя_индекса] (имя_индексируемого_столбца,...) или ADD PRIMARY KEY (имя_индексируемого_столбца,...) или ADD UNIQUE [имя_индекса] (имя_индексируемого_столбца,...) или ADD FULLTEXT [имя_индекса] (имя_индексируемого_столбца,...)

  • изменение поля:

    ALTER имя_столбца {SET DEFAULT literal | DROP DEFAULT} или CHANGE старое_имя_столбца определение_столбца или MODIFY определение_столбца

  • удаление поля, индекса, ключа:

    DROP имя_столбца DROP PRIMARY KEY DROP INDEX имя_индекса

  • переименование таблицы:

    RENAME новое_имя_таблицы

  • переупорядочение полей таблицы:

    ORDER BY поле

    опции_таблицы

Если оператор ALTER TABLE используется для изменения определения типа столбца, но DESCRIBE имя_таблицы показывает, что столбец не изменился, то, возможно, MySQL игнорирует данную модификацию по одной из причин, описанных в специальном разделе документации. Например, при попытке изменить столбец VARCHAR на CHAR MySQL будет продолжать использовать VARCHAR , если данная таблица содержит другие столбцы с переменной длиной.

Оператор ALTER TABLE во время работы создает временную копию исходной таблицы. Требуемое изменение выполняется на копии, затем исходная таблица удаляется, а новая переименовывается. Это делается для того, чтобы в новую таблицу автоматически попадали все обновления, кроме неудавшихся. Во время выполнения ALTER TABLE исходная таблица доступна для чтения другими клиентами. Операции обновления и записи в этой таблице приостанавливаются, пока не будет готова новая таблица. Следует отметить, что при использовании любой другой опции для ALTER TABLE , кроме RENAME , MySQL всегда будет создавать временную таблицу, даже если данные, строго говоря, и не нуждаются в копировании (например, при изменении имени столбца).

Пример10.3 . Добавим в созданную таблицу Persons поле для записи года рождения человека:

mysql> ALTER TABLE Persons ADD bday INTEGER AFTER last_name; Пример 10.3. Добавление в таблицу Persons поля для записи года рождения человека

Итак, мы научились работать с таблицами: создавать, удалять и изменять их. Теперь разберемся, как делать то же самое с данными, которые в этих таблицах хранятся.

Оператор SELECT

Оператор SELECT применяется для извлечения строк, выбранных из одной или нескольких таблиц. То есть с его помощью мы задаем столбцы или выражения, которые надо извлечь (select_выражения ), таблицы (table_references ), из которых должна производиться выборка, и, возможно, условие (where_definition ), которому должны соответствовать данные в этих столбцах, и порядок, в котором эти данные нужно выдать.

Кроме того, оператор SELECT можно использовать для извлечения строк, вычисленных без ссылки на какую-либо таблицу. Например, чтобы вычислить, чему равно 2*2 , нужно просто написать

mysql> SELECT 2*2;

Упрощенно структуру оператора SELECT можно представить следующим образом:

Квадратные скобки означают, что использование находящегося в них оператора необязательно, вертикальная черта | означает перечисление возможных вариантов. После ключевого слова ORDER BY указывают имя столбца, число (целое беззнаковое) или формулу и способ упорядочения (по возрастанию – ASC , или по убыванию – DESC ). По умолчанию используется упорядочение по возрастанию.

Когда в select_выражении мы пишем «* », это значит выбрать все столбцы. Кроме «* » в select_выражения могут использоваться функции типа max , min и avg .

Пример 10.4 . Выбрать из таблицы Persons все данные, для которых поле first_name имеет значение "Александр" :

Выбрать название и описание (title , description ) артефакта под номером 10:

Оператор INSERT

Оператор INSERT вставляет новые строки в существующую таблицу. Оператор имеет несколько форм. Параметр имя_таблицы во всех этих формах задает таблицу, в которую должны быть внесены строки. Столбцы, для которых задаются значения, указываются в списке имен столбцов (имя_столбца ) или в части SET .

Синтаксис:

    INSERT имя_таблицы [(имя_столбца,...)] VALUES (выражение,...),(...),...

    Эта форма команды INSERT вставляет строки в соответствии с точно указанными в команде значениями. В скобках после имени таблицы перечисляются столбцы, а после ключевого слова VALUES – их значения.

    Например:

    mysql> INSERT INTO Persons (last_name, bday) VALUES ("Иванов", "1934");

    вставит в таблицу Persons строку, в которой значения фамилии (last_name ) и даты рождения (bday ) будут заданы соответственно как «Иванов» и «1934».

    INSERT имя_таблицы [(имя_столбца,...)] SELECT ...

    Эта форма команды INSERT вставляет строки, выбранные из другой таблицы или таблиц.

    Например:

    вставит в таблицу Artifacts в поле «автор» (author ) значение идентификатора, выбранного из таблицы Persons по условию, что фамилия человека Иванов.

    INSERT имя_таблицы SET имя_столбца=выражение, имя_столбца=выражение, ...

    Например:

    mysql> INSERT INTO Persons SET last_name="Петров", first_name="Иван";

    Эта команда вставит в таблицу Persons в поле last_name значение «Петров», а в поле first_name – строку «Иван».

Форма INSERT ... VALUES со списком из нескольких значений поддерживается в версии MySQL 3.22.5 и более поздних. Синтаксис выражения имя_столбца=выражение поддерживается в версии MySQL 3.22.10 и более поздних.

Действуют следующие соглашения.

  • Если не указан список столбцов для INSERT ... VALUES или INSERT ... SELECT , то величины для всех столбцов должны быть определены в списке VALUES() или в результате работы SELECT . Если порядок столбцов в таблице неизвестен, для его получения можно использовать DESCRIBE имя_таблицы .
  • Любой столбец, для которого явно не указано значение, будет установлен в свое значение по умолчанию. Например, если в заданном списке столбцов не указаны все столбцы в данной таблице, то не упомянутые столбцы устанавливаются в свои значения по умолчанию.
  • Выражение expression может относиться к любому столбцу, который ранее был внесен в список значений. Например, можно указать следующее:

    mysql> INSERT INTO имя_таблицы (col1,col2) VALUES(15,col1*2);

    Но нельзя указать:

    mysql> INSERT INTO имя_таблицы (col1,col2) VALUES(col2*2,15);

Мы еще не обсудили три необязательных параметра, присутствующих во всех трех формах команды: LOW_PRIORITY , DELAYED и IGNORE .

Параметры LOW_PRIORITY и DELAYED используются, когда с таблицей работает большое число пользователей. Они предписывают устанавливать приоритет данной операции перед операциями других пользователей. Если указывается ключевое слово LOW_PRIORITY , то выполнение данной команды INSERT будет задержано до тех пор, пока другие клиенты не завершат чтение этой таблицы. В этом случае клиент должен ожидать, пока данная команда вставки не будет завершена, что в случае интенсивного использования таблицы может потребовать значительного времени. В противоположность этому команда INSERT DELAYED позволяет данному клиенту продолжать операцию сразу же, независимо от других пользователей.

Если в команде INSERT указывается ключевое слово IGNORE , то все строки, имеющие дублирующиеся ключи PRIMARY или UNIQUE в этой таблице, будут проигнорированы и не внесены в таблицу. Если не указывать IGNORE , то данная операция вставки прекращается при обнаружении строки, имеющей дублирующееся значение существующего ключа.

Оператор UPDATE

Синтаксис:

Оператор UPDATE обновляет значения существующих столбцов таблицы в соответствии с введенными значениями. В выражении SET указывается, какие именно столбцы следует модифицировать и какие величины должны быть в них установлены. В выражении WHERE , если оно присутствует, задается, какие строки подлежат обновлению. В остальных случаях обновляются все строки. Если задано выражение ORDER BY , то строки будут обновляться в указанном в нем порядке.

Если указывается ключевое слово LOW_PRIORITY , то выполнение данной команды UPDATE задерживается до тех пор, пока другие клиенты не завершат чтение этой таблицы.

Если указывается ключевое слово IGNORE , то команда обновления не будет прервана, даже если возникнет ошибка дублирования ключей. Строки, из-за которых возникают конфликтные ситуации, обновлены не будут.

Если в выражении, которое задает новое значение столбца, используется имя этого поля, то команда UPDATE использует для этого столбца его текущее значение. Например, следующая команда устанавливает столбец death_date в значение, на единицу большее его текущей величины:

mysql> UPDATE Persons SET death_date=death_date+1;

В версии MySQL 3.23 можно использовать параметр LIMIT # , чтобы убедиться, что было изменено только заданное количество строк.

Например, такая операция заменит в первой строке нашей таблицы экспонатов название title на строку «Ламповая ЭВМ»:

mysql> UPDATE Artifacts SET title="Ламповая ЭВМ" Limit 1;

Оператор DELETE

Оператор DELETE удаляет из таблицы имя_таблицы строки, удовлетворяющие заданным в where_definition условиям, и возвращает число удаленных записей.

Если оператор DELETE запускается без определения WHERE , то удаляются все строки.

Синтаксис:

Например, следующая команда удалит из таблицы Persons

баз данных , который мог бы функционировать в многочисленных компьютерных системах различных видов. Действительно, с его помощью пользователи могут манипулировать данными независимо от того, работают ли они на персональном компьютере, сетевой рабочей станции или универсальной ЭВМ.

Одним из языков, появившихся в результате разработки реляционной модели данных, является язык SQL (Structured Query Language), который в настоящее время получил очень широкое распространение и фактически превратился в стандартный язык реляционных баз данных . Стандарт на язык SQL был выпущен Американским национальным институтом стандартов (ANSI) в 1986 г., а в 1987 г. Международная организация стандартов (ISO) приняла его в качестве международного. Нынешний стандарт SQL известен под названием SQL/92.

С использованием любых стандартов связаны не только многочисленные и вполне очевидные преимущества, но и определенные недостатки. Прежде всего, стандарты направляют в определенное русло развитие соответствующей индустрии; в случае языка SQL наличие твердых основополагающих принципов приводит, в конечном счете, к совместимости его различных реализаций и способствует как повышению переносимости программного обеспечения и баз данных в целом, так и универсальности работы администраторов баз данных . С другой стороны, стандарты ограничивают гибкость и функциональные возможности конкретной реализации . Под реализацией языка SQL понимается программный продукт SQL соответствующего производителя. Для расширения функциональных возможностей многие разработчики, придерживающиеся принятых стандартов, добавляют к стандартному языку SQL различные расширения. Следует отметить, что стандарты требуют от любой законченной реализации языка SQL наличия определенных характеристик и в общих чертах отражают основные тенденции, которые не только приводят к совместимости между всеми конкурирующими реализациями , но и способствуют повышению значимости программистов SQL и пользователей реляционных баз данных на современном рынке программного обеспечения.

Все конкретные реализации языка несколько отличаются друг от друга. В интересах самих же производителей гарантировать, чтобы их реализация соответствовала современным стандартам ANSI в части переносимости и удобства работы пользователей. Тем не менее каждая реализация SQL содержит усовершенствования, отвечающие требованиям того или иного сервера баз данных . Эти усовершенствования или расширения языка SQL представляют собой дополнительные команды и опции, являющиеся добавлениями к стандартному пакету и доступные в данной конкретной реализации .

В настоящее время язык SQL поддерживается многими десятками СУБД различных типов, разработанных для самых разнообразных вычислительных платформ, начиная от персональных компьютеров и заканчивая мейнфреймами.

Все языки манипулирования данными, созданные для многих СУБД до появления реляционных баз данных , были ориентированы на операции с данными, представленными в виде логических записей файлов. Разумеется, это требовало от пользователя детального знания организации хранения данных и серьезных усилий для указания того, какие данные необходимы, где они размещаются и как их получить.

Рассматриваемый язык SQL ориентирован на операции с данными, представленными в виде логически взаимосвязанных совокупностей таблиц -отношений. Важнейшая особенность его структур – ориентация на конечный результат обработки данных, а не на процедуру этой обработки. Язык SQL сам определяет, где находятся данные, индексы и даже какие наиболее эффективные последовательности операций следует использовать для получения результата, а потому указывать эти детали в запросе к базе данных не требуется.

Введение в технологию клиент-сервер

В связи с расширением рынка информационных услуг производители программного обеспечения стали выпускать все более интеллектуальные, а значит, и объемные программные комплексы. Многие организации и отдельные пользователи часто не могли разместить приобретенные продукты на собственных ЭВМ. Для обмена информацией и ее распространения были созданы сети ЭВМ, а обобщающие программы и данные стали устанавливать на специальных файловых серверах .

Благодаря работающим с файловыми серверами СУБД , множество пользователей получают доступ к одним и тем же базам данных . Упрощается разработка различных автоматизированных систем управления организациями. Однако при таком подходе вся обработка запросов из программ или с терминалов пользовательских ЭВМ на них и выполняется, поэтому для реализации даже простого запроса необходимо считывать с файлового сервера или записывать на него целые файлы, а это ведет к конфликтным ситуациям и перегрузке сети. Для исключения указанных недостатков была предложена технология клиент-сервер , но при этом понадобился единый язык общения с сервером – выбор пал на SQL .

Технология клиент-сервер означает такой способ взаимодействия программных компонентов, при котором они образуют единую систему. Как видно из самого названия, существует некий клиентский процесс, требующий определенных ресурсов, а также серверный процесс , который эти ресурсы предоставляет. Совсем необязательно, чтобы они находились на одном компьютере. Обычно принято размещать сервер на одном узле локальной сети, а клиентов – на других узлах.

В контексте базы данных клиент управляет пользовательским интерфейсом и логикой приложения, действуя как рабочая станция , на которой выполняются приложения баз данных . Клиент принимает от пользователя запрос , проверяет синтаксис и генерирует запрос к базе данных на языке SQL или другом языке базы данных , соответствующем логике приложения. Затем передает сообщение серверу , ожидает поступления ответа и форматирует полученные данные для представления их пользователю. Сервер принимает и обрабатывает запросы к базе данных , после чего отправляет полученные результаты обратно клиенту . Такая обработка включает проверку полномочий клиента , обеспечение требований целостности, а также выполнение запроса и обновление данных. Помимо этого поддерживается управление параллельностью и восстановлением.

Архитектура клиент-сервер обладает рядом преимуществ.

Поделитесь с друзьями или сохраните для себя:

Загрузка...