Что такое пифагоровы тройки. Невероятные числа профессора стюарта. Использование пифагоровых троек при решении

Дальше рассмотрим известные способы генерации эффективных пифагоровых троек. Ученики Пифагора были первыми, кто изобрели простой способ генерации пифагоровых троек, используя формулу, части которой представляют пифагорову тройку:

m 2 + ((m 2 − 1)/2) 2 = ((m 2 + 1)/2) 2 ,

Где m — непарное, m >2. Действительно,

4m 2 + m 4 − 2m 2 + 1
m 2 + ((m 2 − 1)/2) 2 = ————————— = ((m 2 + 1)/2) 2 .
4

Аналогичную формулу предложил древнегреческий философ Платон:

(2m ) 2 + (m 2 − 1) 2 = (m 2 + 1) 2 ,

Где m — любое число. Для m = 2,3,4,5 генерируются следующие тройки:

(16,9,25), (36,64,100), (64,225,289), (100,576,676).

Как видим, эти формулы не могут дать все возможные примитивные тройки.

Россмотрим следующий полином, который разкладывается на суму полиномов:

(2m 2 + 2m + 1) 2 = 4m 4 + 8m 3 + 8m 2 + 4m + 1 =
=4m 4 + 8m 3 + 4m 2 + 4m 2 + 4m + 1 = (2m (m +1)) 2 + (2m +1) 2 .

Отсюда следующие формулы для получения примитивных троек:

a = 2m +1 , b = 2m (m +1) = 2m 2 + 2m , c = 2m 2 + 2m + 1.

Эти формулы генерируют тройки, в которых среднее число отличается от наибольшего ровно на единицу, то есть также генерируются не все возможные тройки. Тут первые тройки равняются: (5,12,13), (7,24,25), (9,40,41), (11,60,61).

Чтобы определить способ генерации всех примитивных троек, следует исследовать ихние свойства. Во-первых, если (a,b,c ) — примитивная тройка, то a и b , b и c , а и c — должны быть взаимно простыми. Пусть a и b делятся на d . Тогда a 2 + b 2 — также делится на d . Соответственно, c 2 и c должны делиться на d . То есть, это не есть примитивная тройка.

Во-вторых, среди чисел a , b одно должно быть парным, а другое — непарным. Действительно, если a и b — парные, то и с будет парным, и числа можно поделить по крайней мере на 2. Если они оба непарные, то их можно представить как 2k +1 i 2l +1, где k ,l — некоторые числа. Тогда a 2 + b 2 = 4k 2 +4k +1+4l 2 +4l +1, то есть, с 2 , как и a 2 + b 2 , при делении на 4 имеет остаток 2.

Пусть с — любое число, то есть с = 4k +i (i =0,…,3). Тогда с 2 = (4k +i ) 2 имеет остаток 0 или 1 и не может иметь остаток 2. Таким образом, a и b не могут быть непарными, то есть a 2 + b 2 = 4k 2 +4k +4l 2 +4l +1 и остаток от деления с 2 на 4 должен быть 1, что значит, что с должно быть непарным.

Такие требования к элементам пифагоровой тройки удовлетворяют следующие числа:

a = 2mn , b = m 2 − n 2 , c = m 2 + n 2 , m > n , (2)

Где m и n — взаимно простые с разной парностью. Впервые эти зависимости стали известными из трудов Эвклида, который жил 2300 р. назад.

Докажем справедливость зависимостей (2). Пусть а — парное, тогда b и c — непарные. Тогда c + b i c b — парные. Их можно представить как c + b = 2u и c b = 2v , где u ,v — некоторые целые числа. Поэтому

a 2 = с 2 − b 2 = (c + b )(c b ) = 2u ·2v = 4uv

И поэтому (a /2) 2 = uv .

Можно доказать от противного, что u и v — взаимно простые. Пусть u и v — делятся на d . Тогда (c + b ) и (c b ) делятся на d . И поэтому c и b должны делиться на d , а это противоречит условию к пифагоровой тройке.

Так как uv = (a /2) 2 и u и v — взаимно простые, то несложно доказать, что u и v должны быть квадратами каких-то чисел.

Таким образом, есть положительные целые числа m и n , такие что u = m 2 и v = n 2 . Тогда

а 2 = 4uv = 4m 2 n 2 , так что
а = 2mn ; b = u v = m 2 − n 2 ; c = u + v = m 2 + n 2 .

Так как b > 0, то m > n .

Осталось показать, что m и n имеют разную парность. Если m и n — парные, то u и v должны быть парными, а это невозможно, так как они взаимно простые. Если m и n — непарные, то b = m 2 − n 2 и c = m 2 + n 2 были бы парными, что невозможно, так как c и b — взаимно простые.

Таким образом, любая примитивная пифагорова тройка должна удовлетворять условия (2). При этом числа m и n называются генерирующими числами примитивных троек. Например, пусть имеем примитивную пифагорову тройку (120,119,169). В этом случае

а = 120 = 2·12·5, b = 119 = 144 − 25, и c = 144+25=169,

Где m = 12, n = 5 — генерирующие числа, 12 > 5; 12 и 5 — взаимно простые и разной парности.

Можно доказать обратное, что числа m , n по формулам (2) дают примитивную пифагорову тройку (a,b,c). Действительно,

а 2 + b 2 = (2mn ) 2 + (m 2 − n 2) 2 = 4m 2 n 2 + (m 4 − 2m 2 n 2 + n 4) =
= (m 4 + 2m 2 n 2 + n 4) = (m 2 + n 2) 2 = c 2 ,

То есть (a ,b ,c ) — пифагорова тройка. Докажем, что при этом a ,b ,c — взаимно простые числа от противного. Пусть эти числа делятся на p > 1. Так как m и n имеют разную парность, то b и c — непарные, то есть p ≠ 2. Так как р делит b и c , то р должно делить 2m 2 и 2n 2 , а это невозможно, так как p ≠ 2. Поэтому m , n — взаимно простые и a ,b ,c — тоже взаимно простые.

В таблице 1 показаны все примитивные пифагоровы тройки, сгенерированые по формулам (2) для m ≤10.

Таблица 1. Примитивные пифагоровы тройки для m ≤10

m n a b c m n a b c
2 1 4 3 5 8 1 16 63 65
3 2 12 5 13 8 3 48 55 73
4 1 8 15 17 8 5 80 39 89
4 3 24 7 25 8 7 112 15 113
5 2 20 21 29 9 2 36 77 85
5 4 40 9 41 9 4 72 65 97
6 1 12 35 37 9 8 144 17 145
6 5 60 11 61 10 1 20 99 101
7 2 28 45 53 10 3 60 91 109
7 4 56 33 65 10 7 140 51 149
7 6 84 13 85 10 9 180 19 181

Анализ этой таблицы показывает наличие следующего ряда закономерностей:

  • или a , или b делятся на 3;
  • одно из чисел a ,b ,c делится на 5;
  • число а делится на 4;
  • произведение a ·b делится на 12.

В 1971 г. американские математики Тейган и Хедвин для генерации троек предложили такие малоизвестные параметры прямоугольного треугольника, как его рост (height) h = c − b и избыток (success) е = a + b c . На рис.1. показаны эти величины на некотором прямоугольном треугольнике.

Рисунок 1. Прямоугольный треугольник и его рост и избыток

Название “избыток” является производным от того, что это добавочное расстояние, которое необходимо пройти по катетам треугольника из одной вершины в противоположную, если не идти по его диагонали.

Через избыток и рост стороны пифагорового треугольника можно выразить как:

e 2 e 2
a = h + e , b = e + ——, c = h + e + ——, (3)
2h 2h

Не все комбинации h и e могут отвечать пифагоровым треугольникам. Для заданого h возможные значения e — это произведения некоторого числа d . Это число d имеет название прироста и относится к h следующим образом: d — это наименьшее положительное целое число, квадрат которого делится на 2h . Так как e кратное d , то оно записывается как e = kd , где k — положительное целое.

С помощью пар (k ,h ) можно сгенерировать все пифагоровы треугольники, включая непримитивные и обобщенные, следующим образом:

(dk ) 2 (dk ) 2
a = h + dk , b = dk + ——, c = h + dk + ——, (4)
2h 2h

Причем тройка является примитивной, если k и h — взаимно простые и если h q 2 при q — непарном.
Кроме того, это будет именно пифагорова тройка, если k > √2·h /d и h > 0.

Чтобы найти k и h из (a ,b ,c ), выполняют следующие действия:

  • h = c b ;
  • записывают h как h = pq 2 , где p > 0 и такое, что не является квадратом;
  • d = 2pq если p — непарное и d = pq , если p — парное;
  • k = (a h )/d .

Например, для тройки (8,15,17) имеем h = 17−15 = 2·1, так что p = 2 и q = 1, d = 2, и k = (8 − 2)/2 = 3. Так что эта тройка задается как (k ,h ) = (3,2).

Для тройки (459,1260,1341) имеем h = 1341 − 1260 = 81, так что p = 1, q = 9 и d = 18, отсюда k = (459 − 81)/18 = 21, так что код этой тройки равняется (k ,h ) = (21, 81).

Задание троек с помощью h и k имеет ряд интересных свойств. Параметр k равняется

k = 4S /(dP ), (5)

Где S = ab /2 — площадь треугольника, а P = a + b + c — его периметр. Это следует из равенства eP = 4S , которое выходит из теоремы Пифагора.

Для прямоугольного треугольника e равняется диаметру вписаной в треугольник окружности. Это выходит из того, что гипотенуза с = (а r )+(b r ) = a + b − 2r , где r — радиус окружности. Отсюда h = c b = а − 2r и е = a h = 2r .

Для h > 0 и k > 0, k является порядковым номером троек a -b -c в последовательности пифагоровых треугольников с ростом h . Из таблицы 2, где представлено несколько вариантов троек, сгенерированых парами h , k , видно, что с увеличением k возрастают величины сторон треугольника. Таким образом, в отличии от классической нумерации, нумерация парами h , k имеет больший порядок в последовательностях троек.

Таблица 2. Пифагоровы тройки, сгенерированые парами h, k.

h k a b c h k a b c
2 1 4 3 5 3 1 9 12 15
2 2 6 8 10 3 2 15 36 39
2 3 8 15 17 3 3 21 72 75
2 4 10 24 26 3 4 27 120 123
2 5 12 35 37 3 5 33 180 183

Для h > 0, d удовлетворяет неравенство 2√h d ≤ 2h , в котором нижняя граница достигается при p = 1, а верхняя — при q = 1. Поэтому значение d относительно 2√h — это мера того, насколько число h отдаленное от квадрата некоторого числа.

Свойства

Поскольку уравнение x 2 + y 2 = z 2 однородно , при домножении x , y и z на одно и то же число получится другая пифагорова тройка. Пифагорова тройка называется примитивной , если она не может быть получена таким способом, то есть - взаимно простые числа .

Примеры

Некоторые пифагоровы тройки (отсортированы по возрастанию максимального числа, выделены примитивные):

(3, 4, 5), (6, 8, 10), (5, 12, 13), (9, 12, 15), (8, 15, 17), (12, 16, 20), (15, 20, 25), (7, 24, 25), (10, 24, 26), (20, 21, 29), (18, 24, 30), (16, 30, 34), (21, 28, 35), (12, 35, 37), (15, 36, 39), (24, 32, 40), (9, 40, 41), (14, 48, 50), (30, 40, 50)…

История

Пифагоровы тройки известны очень давно. В архитектуре древнемесопотамских надгробий встречается равнобедренный треугольник, составленный из двух прямоугольных со сторонами 9, 12 и 15 локтей. Пирамиды фараона Снофру (XXVII век до н. э.) построены с использованием треугольников со сторонами 20, 21 и 29, а также 18, 24 и 30 десятков египетских локтей.

X Всероссийский симпозиум по прикладной и промышленной математике. Санкт - Петербург, 19 мая 2009г.

Доклад: Алгоритм решения Диофантовых уравнений.

В работе рассмотрен метод исследования Диофантовых уравнений и представлены решенные этим методом: - великая теорема Ферма; - поиск Пифагоровых троек и тд. http://referats.protoplex.ru/referats_show/6954.html

Ссылки

  • Е. А. Горин Степени простых чисел в составе пифагоровых троек // Математическое просвещение . - 2008. - В. 12. - С. 105-125.

Wikimedia Foundation . 2010 .

Смотреть что такое "Пифагоровы тройки" в других словарях:

    В математике пифагоровыми числами (пифагоровой тройкой) называется кортеж из трёх целых чисел удовлетворяющих соотношению Пифагора: x2 + y2 = z2. Содержание 1 Свойства … Википедия

    Тройки таких натуральных чисел, что треугольник, длины сторон которого пропорциональны (или равны) этим числам, является прямоугольным, напр. тройка чисел: 3, 4, 5 … Большой Энциклопедический словарь

    Тройки натуральных чисел таких, что треугольник, длины сторон которого пропорциональны (или равны) этим числам, является прямоугольным. По теореме, обратной теореме Пифагора (см. Пифагора теорема), для этого достаточно, чтобы они… … Большая советская энциклопедия

    Тройки целых положительных чисел х, у,z, удовлетворяющих уравнению x2+у 2=z2. Все решения этого уравнения, а следовательно, и все П. ч. выражаются формулами х=а 2 b2, y=2ab, z=a2+b2, где а, b произвольные целые положительные числа (а>b). П. ч … Математическая энциклопедия

    Тройки таких натуральных чисел, что треугольник, длины сторон к рого пропорциональны (или равны) этим числам, является прямоугольным, напр. тройка чисел: 3, 4, 5 … Естествознание. Энциклопедический словарь

    Тройки таких натуральных чисел, что треугольник, длины сторон которого пропорциональны (или равны) этим числам, является прямоугольным, например тройка чисел: 3, 4, 5. * * * ПИФАГОРОВЫ ЧИСЛА ПИФАГОРОВЫ ЧИСЛА, тройки таких натуральных чисел, что… … Энциклопедический словарь

    В математике пифагоровой тройкой называется кортеж из трёх натуральных чисел удовлетворяющих соотношению Пифагора: При этом числа, образующие пифагорову тройку, называются пифагоровыми числами. Содержание 1 Примитивные тройки … Википедия

    Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Содержание 1 … Википедия

    Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Содержание 1 Формулировки 2 Доказательства … Википедия

    Это уравнение вида где P целочисленная функция (например, полином с целыми коэффициентами), а переменные принимают целые значения. Названы в честь древнегреческого математика Диофанта. Содержание 1 Примеры … Википедия

Белотелов В.А. Пифагоровы тройки и их количество // Энциклопедия Нестеровых

Эта статья является ответом одному профессору – щипачу. Смотри, профессор, как это у нас в деревне делают.

Нижегородская область, г. Заволжье.

Требуется знание алгоритма решения диофантовых уравнений (АРДУ) и знание прогрессий многочленов.

ПЧ – простое число.

СЧ – составное число.

Пусть есть число N нечётное. Для любого нечётного числа, кроме единицы, можно составить уравнение.

р 2 + N = q 2 ,

где р + q = N, q – р = 1.

Например, для чисел 21 и 23 уравнениями будут, -

10 2 + 21 = 11 2 , 11 2 + 23 = 12 2 .

Если число N простое, данное уравнение единственное. Если число N составное, тогда можно составить подобных уравнений по числу пар сомножителей представляющих это число, включая 1 х N.

Возьмём число N = 45, -

1 х 45 = 45, 3 х 15 = 45, 5 х 9 = 45.

Мечталось, а нельзя ли уцепившись за это различие между ПЧ и СЧ найти метод их идентификации.

Введём обозначения;

Изменим нижнее уравнение, -

N = в 2 – а 2 = (в – а)(в + а).

Сгруппируем величины N по признаку в - а, т.е. составим таблицу.

Числа N были сведены в матрицу, -

Именно под эту задачу пришлось разбираться с прогрессиями многочленов и их матрицами. Всё оказалось напрасно, – ПЧ оборону держат мощно. Давайте в таблицу 1 введём столбец, где в - а = 1 (q - р = 1).

И ещё раз. Таблица 2 получилась в следствии попытки решения задачи об идентификации ПЧ и СЧ. Из таблицы следует, что для любого числа N, существует столько уравнений вида а 2 + N = в 2 , на сколько пар сомножителей можно разбить число N, включая сомножитель 1 х N. Кроме чисел N = ℓ 2 , где

ℓ - ПЧ. Для N = ℓ 2 , где ℓ - ПЧ, существует единственное уравнение р 2 + N = q 2 . О каком дополнительном доказательстве может идти речь, если в таблице перебраны меньшие множители из пар сомножителей, образующих N, от единицы до ∞. Таблицу 2 поместим в сундучок, а сундучок спрячем в чуланчике.

Вернёмся к теме заявленной в названии статьи.

Эта статья является ответом одному профессору – щипачу.

Обратился за помощью, – требовался ряд чисел, который не мог найти в интернете. Напоролся на вопросы типа, – "а за чем?", "а покажи метод". Был в частности задач вопрос, бесконечен ли ряд пифагоровых троек, "а как доказать?". Не помог он мне. Смотри, профессор, как это у нас в деревне делают.

Возьмем формулу пифагоровых троек, –

х 2 = у 2 + z 2 . (1)

Пропустим через АРДУ.

Возможны три ситуации:

I. х – нечётное число,

у – чётное число,

z – чётное число.

И есть условие х > у > z.

II. х – нечётное число,

у – чётное число,

z – нечётное число.

х > z > у.

III.х – чётное число,

у – нечётное число,

z – нечётное число.

х > у > z.

Начнём по порядку с I.

Введём новые переменные

Подставим в уравнение (1).

Сократим на меньшее переменное 2γ.

(2α – 2γ + 2к + 1) 2 = (2β – 2γ + 2к) 2 + (2к + 1) 2 .

Сократим на меньшее переменное 2β – 2γ с одновременным введением нового параметра ƒ, -

(2α – 2β + 2ƒ + 2к + 1) 2 = (2ƒ + 2к) 2 + (2к + 1) 2 (2)

Тогда, 2α – 2β = х – у – 1.

Уравнение (2) примет вид, –

(х – у + 2ƒ + 2к) 2 = (2ƒ + 2к) 2 + (2к + 1) 2

Возведём в квадрат, -

(х – у) 2 + 2(2ƒ + 2к)(х – у) + (2ƒ + 2к) 2 = (2ƒ + 2к) 2 + (2к + 1) 2 ,

(х – у) 2 + 2(2ƒ + 2к)(х – у) – (2к + 1) 2 = 0. (3)

АРДУ даёт через параметры соотношение между старшими членами уравнения, поэтому мы получили уравнение (3).

Не солидно заниматься подбором решений. Но, во – первых, деваться некуда, а во – вторых, этих решений нужно несколько, а бесконечный ряд решений мы сможем восстановить.

При ƒ = 1, к = 1, имеем х – у = 1.

При ƒ = 12, к = 16, имеем х – у = 9.

При ƒ = 4, к = 32, имеем х – у = 25.

Подбирать можно долго, но в конечном итоге ряд примет вид, -

х – у = 1, 9, 25, 49, 81, ….

Рассмотрим вариант II.

Введём в уравнение (1) новые переменные

(2α + 2к + 1) 2 = (2β + 2к) 2 + (2γ + 2к + 1) 2 .

Сократим на меньшее переменное 2 β, -

(2α – 2β + 2к + 1) 2 = (2α – 2β + 2к+1) 2 + (2к) 2 .

Сократим на меньшее переменное 2α – 2β, –

(2α – 2γ + 2ƒ + 2к + 1) 2 = (2ƒ + 2к + 1) 2 + (2к) 2 . (4)

2α – 2γ = х – z и подставим в уравнение (4).

(х – z + 2ƒ + 2к + 1) 2 = (2ƒ + 2к + 1) 2 + (2к) 2

(х – z) 2 + 2(2ƒ + 2к + 1)(х – z) + (2ƒ + 2к + 1) 2 = (2ƒ + 2к + 1) 2 + (2к) 2 (х – z) 2 + 2(2ƒ + 2к + 1)(х – z) – (2к) 2 = 0

При ƒ = 3, к = 4, имеем х – z = 2.

При ƒ = 8, к = 14, имеем х – z = 8.

При ƒ = 3, к = 24, имеем х – z = 18.

х – z = 2, 8, 18, 32, 50, ….

Нарисуем трапецию, -

Напишем формулу.

где n=1, 2,... ∞.

Случай III расписывать не будем, – нет там решений.

Для условия II набор троек будет таким:

Уравнение (1) представлено в виде х 2 = z 2 + у 2 для наглядности.

Для условия I набор троек будет таким:

В общей сложности расписано 9 столбцов троек, по пять троек в каждом. И каждый из представленных столбцов можно писать до ∞.

В качестве примера рассмотрим тройки последнего столбца, где х – у = 81.

Для величин х распишем трапецию, -

Напишем формулу, -

Для величин у распишем трапецию, -

Напишем формулу, -

Для величин z распишем трапецию, -

Напишем формулу, -

Где n = 1 ÷ ∞.

Как и обещано, ряд троек при х – у = 81 летит в ∞.

Была попытка для случаев I и II построить матрицы для величин х, у, z.

Выпишем из последних пяти столбцов величины х из верхних строк и построим трапецию.

Не получилось, а закономерность должна быть квадратичной. Чтобы всё было в ажуре, оказалось, что надо объединить столбцы I и II.

В случае II величины у, z снова поменяем местами.

Объединить удалось по одной причине, – карты хорошо легли в этой задаче, – повезло.

Теперь можно расписать матрицы для х, у, z.

Возьмём из последних пяти столбцов величины х из верхних строк и построим трапецию.

Всё нормально, можно строить матрицы, и начнём с матрицы для z.

Бегом в чуланчик за сундучком.

Итого: Кроме единицы, каждое нечётное число числовой оси участвует в образовании пифагоровых троек равным количеству пар сомножителей образующих данное число N, включая сомножитель 1 х N.

Число N = ℓ 2 , где ℓ - ПЧ, образует одну пифагорову тройку, если ℓ - СЧ, то на сомножителях ℓхℓ тройки не существует.

Построим матрицы для величин х, у.

Начнём работать с матрицей для х. Для этого натянем на неё координатную сетку из задачи по идентификации ПЧ и СЧ.

Нумерация вертикальных рядов нормирована выражением

Первый столбец уберём, т.к.

Матрица примет вид, -

Опишем вертикальные ряды, -

Опишем коэффициенты при "а", -

Опишем свободные члены, -

Составим общую формулу для "х", -

Если провести подобную работу для "у", получим, -

Можно подойти к этому результату и с другой стороны.

Возьмём уравнение, –

а 2 + N = в 2 .

Чуть преобразуем, –

N = в 2 – а 2 .

Возведём в квадрат, –

N 2 = в 4 – 2в 2 а 2 + а 4 .

К левой и правой части уравнения добавим по величине 4в 2 а 2 , -

N 2 + 4в 2 а 2 = в 4 + 2в 2 а 2 + а 4 .

И окончательно, –

(в 2 + а 2) 2 = (2ва) 2 + N 2 .

Пифагоровы тройки составляются так:

Рассмотрим пример с числом N = 117.

1 х 117 = 117, 3 х 39 = 117, 9 х 13 = 117.

Вертикальные столбцы таблицы 2 пронумерованы величинами в – а, тогда как вертикальные столбцы таблицы 3 пронумерованы величинами х – у.

х – у = (в – а) 2 ,

х = у + (в – а) 2 .

Составим три уравнения.

(у + 1 2) 2 = у 2 + 117 2 ,

(у + 3 2) 2 = у 2 + 117 2 ,

(у + 9 2) 2 = у 2 + 117 2 .

х 1 = 6845, у 1 = 6844, z 1 = 117.

х 2 = 765, у 2 = 756, z 2 = 117 (х 2 = 85, у 2 = 84, z 2 = 13).

х 3 = 125, у 3 = 44, z 3 = 117.

Сомножители 3 и 39 не являются взаимно простыми числами, поэтому одна тройка получилась с коэффициентом 9.

Изобразим выше написанное в общих символах, -

В данной работе всё, включая пример на расчёт пифагоровых троек с числом

N = 117, привязано к меньшему сомножителю в - а. Явная дискриминация по отношению к сомножителю в + а. Исправим эту несправедливость, – составим три уравнения с сомножителем в + а.

Вернёмся к вопросу об идентификации ПЧ и СЧ.

Много что было совершено в этом направлении и на сегодняшний день через руки дошла следующая мысль, – уравнения идентификации, да такого чтобы и сомножители определить, не существует.

Допустим найдено соотношение F = а,в (N).

Есть формула

Можно избавиться в формуле F от в и получится однородное уравнение n – ой степени относительно а, т.е. F = а(N).

При любой степени n данного уравнения найдётся число N имеющее m пар сомножителей, при m > n.

И как следствие, однородное уравнение n степени должно иметь m корней.

Да быть такого не может.

В данной работе числа N рассматривались для уравнения х 2 = у 2 + z 2 , когда они находятся в уравнении на месте z. Когда N на месте х, - это уже другая задача.

С уважением Белотелов В.А.

Важный пример диофантова уравнения дает теорема Пифагора, связывающая длины x и y катетов прямоугольного треугольника с длиной z его гипотенузы:


Вы, конечно, встречали одно из замечательных решений этого уравнения в натуральных числах, а именно пифагорову тройку чисел x = 3, y = 4, z = 5. Есть ли еще такие тройки?

Оказывается пифагоровых троек бесконечно много и все они давным-давно найдены. Они могут быть получены по известным формулам, о которых вы узнаете из настоящего параграфа.

Если диофантовы уравнения первой и второй степени уже решены, то вопрос о решении уравнений более высоких степеней до сих пор остается открытым, несмотря на усилия крупнейших математиков. В настоящее время, например, еще окончательно не доказана и не опровергнута знаменитая гипотеза Ферма о том, что при любом целом значении n&362;2 уравнение


в целых числах не имеет решений.

Для решения некоторых типов диофантовых уравнений полезную роль могут сыграть так называемые комплексные числа. Что это такое? Пусть буквой i обозначен некий объект, удовлетворяющий условию i 2 = -1 (понятно, что ни одно действительное число этому условию не удовлетворяет). Рассмотрим выражения вида α + iβ, где α и β - действительные числа. Такие выражения будем называть комплексными числами, определив над ними операции сложения и умножения, как и над двучленами, но с той лишь разницей, что выражение i 2 всюду будем заменять числом -1:

7.1. Из одной тройки много

Докажите, что если x 0 , y 0 , z 0 - пифагорова тройка, то тройки y 0 , x 0 , z 0 и x 0 k, y 0 k, z 0 k при любом значении натурального параметра k также являются пифагоровыми.

7.2. Частные формулы

Проверьте, что при любых натуральных значениях m>n тройка вида

является пифагоровой. Всякую ли пифагорову тройку x, y, z можно представить в таком виде, если разрешить переставлять местами числа x и y в тройке?

7.3. Несократимые тройки

Пифагорову тройку чисел, не имеющих общего делителя, большего 1, будем называть несократимой. Докажите, что пифагорова тройка является несократимой только в случае, если любые два из чисел тройки являются взаимно простыми.

7.4. Свойство несократимых троек

Докажите, что в любой несократимой пифагоровой тройке x, y, z число z и ровно одно из чисел x или y являются нечетными.

7.5. Все несократимые тройки

Докажите, что тройка чисел x, y, z является несократимой пифагоровой тройкой тогда и только тогда, когда она с точностью до порядка первых двух чисел совпадает с тройкой 2mn, m 2 - n 2 , m 2 + n 2 , где m>n - взаимно простые натуральные числа разной четности.

7.6. Общие формулы

Докажите, что все решения уравнения


в натуральных числах задаются с точностью до порядка неизвестных x и y формулами

где m>n и k - натуральные параметры (чтобы исключить дублирование каких-либо троек, достаточно выбирать числа тип взаимно простыми и к тому же разной четности).

7.7. Первые 10 троек

Найдите все пифагоровы тройки x, y, z, удовлетворяющие условию x

7.8. Свойства пифагоровых троек

Докажите, что для любой пифагоровой тройки x, y, z справедливы утверждения:

а) хотя бы одно из чисел x или y кратно 3;

б) хотя бы одно из чисел x или y кратно 4;

в) хотя бы одно из чисел x, y или z кратно 5.

7.9. Применение комплексных чисел

Модулем комплексного числа α + iβ называется неотрицательное число

Проверьте, что для любых комплексных чисел α + iβ и γ + iδ выполняется свойство

Пользуясь свойствами комплексных чисел и их модулей, докажите, что любые два целых числа m и n удовлетворяют равенству

т. е. задают решение уравнения


целых числах (сравните с задачей 7.5).

7.10. Непифагоровы тройки

Пользуясь свойствами комплексных чисел и их модулей (см. задачу 7.9), найдите формулы для каких-либо целочисленных решений уравнения:

а) x 2 + y 2 = z 3 ; б) x 2 + y 2 = z 4 .

Решения


7.1. Если x 0 2 + y 0 2 = z 0 2 , то y 0 2 + x 0 2 = z 0 2 , и при любом натуральном значении k имеем

что и требовалось доказать.

7.2. Из равенств

заключаем, что указанная в задаче тройка удовлетворяет уравнению x 2 + y 2 = z 2 в натуральных числах. Однако не всякую пифагорову тройку x, y, z можно представить в таком виде; например, тройка 9, 12, 15 является пифагоровой, но число 15 не представимо в виде суммы квадратов каких-либо двух натуральных чисел m и n.

7.3. Если какие-то два числа из пифагоровой тройки x, y, z имеют общий делитель d, то он будет делителем и третьего числа (так, в случае x = x 1 d, y = y 1 d имеем z 2 = x 2 + y 2 = (x 1 2 + y 1 2)d 2 , откуда z 2 делится на d 2 и z делится на d). Поэтому для несократимости пифагоровой тройки необходимо, чтобы любые два из чисел тройки были взаимно простыми,

7.4. Заметим, что одно из чисел x или y, скажем x, несократимой пифагоровой тройки x, y, z является нечетным, так как в противном случае числа x и y не были бы взаимно простыми (см. задачу 7.3). Если при этом другое число y также нечетно, то оба числа

дают остаток 1 при делении на 4, а число z 2 = x 2 + y 2 дает при делении на 4 остаток 2, т. е. оно делится на 2, но не делится на 4, чего не может быть. Таким образом, число y должно быть четным, а число z, стало быть, нечетным.

7.5. Пусть пифагорова тройка x, y, z несократима и, для определенности, число x четно, а числа y, z нечетны (см. задачу 7.4). Тогда

где числа являются целыми. Докажем, что числа а и b взаимно просты. В самом деле, если бы они имели общий делитель, больший 1, то такой же делитель имели бы и числа z = a + b, y = a - b, т. е. тройка не была бы несократимой (см. задачу 7.3). Теперь, раскладывая числа а и b в произведения простых множителей, замечаем, что любой простой множитель должен входить в произведение 4ab = x 2 только в четной степени, причем если он входит в разложение числа а, то не входит в разложение числа b и наоборот. Поэтому любой простой множитель входит в разложение числа а или b в отдельности только в четной степени, а, значит, сами эти числа являются квадратами целых чисел. Положим тогда получим равенства

причем натуральные параметры m>n взаимно просты (вследствие взаимной простоты чисел а и b) и имеют разную четность (из-за нечетности числа z = m 2 + n 2 ).

Пусть теперь натуральные числа m>n разной четности являются взаимно простыми. Тогда тройка х = 2mn, y = m 2 - n 2 , z = m 2 + n 2 , согласно утверждению задачи 7.2, является пифагоровой. Докажем, что она несократима. Для этого достаточно проверить, что числа y и z не имеют общих делителей (см. задачу 7.3). В самом деле, оба эти числа нечетны, так как числа тип имеют разную четность. Если же числа y и z имеют какой-либо простой общий делитель (тогда уж обязательно нечетный), то такой же делитель имеет и каждое из чисел и а с ними и каждое из чисел m и n, что противоречит их взаимной простоте.

7.6. В силу утверждений, сформулированных в задачах 7.1, 7.2, указанные формулы задают только пифагоровы тройки. С другой стороны, любая пифагорова тройка x, y, z после ее сокращения на наибольший общий делитель k пары чисел x и y становится несократимой (см. задачу 7.3) и, следовательно, может быть представлена с точностью до порядка чисел x и y в виде, описанном в задаче 7.5. Поэтому любая пифагорова тройка задается указанными формулами при некоторых значениях параметров.

7.7. Из неравенства z и формул задачи 7.6 получаем оценку m 2 т. е. m≤5 . Полагая m = 2, n = 1 и k = 1, 2, 3, 4, 5, получаем тройки 3, 4, 5; 6, 8, 10; 9, 12, 15; 12,16,20; 15, 20, 25. Полагая m = 3, n = 2 и k = 1, 2, получаем тройки 5, 12, 13; 10, 24, 26. Полагая m = 4, n = 1, 3 и k = 1, получаем тройки 8, 15, 17; 7, 24, 25. Наконец, полагая m = 5, n = 2 и k = 1, получаем тройку 20, 21, 29.

Пифагоровы тройки чисел

Творческая работа

ученика 8 ”A” класса

МАОУ «Гимназия №1»

Октябрьского района г. Саратова

Панфилова Владимира

Руководитель – учитель математики высшей категории

Гришина Ирина Владимировна


Содержание

Введение……………………………………………………………………………………3

Теоретическая часть работы

Нахождение основного Пифагорова треугольника

(формулы древних индусов)………………………………………………………………4

Практическая часть работы

Составление пифагоровых троек различными способами……………………........6

Важное свойство пифагоровых треугольников……………………………………...8

Заключение………………………………………………………………………………....9

Литература….……………………………………………………………………………...10

Введение

В этом учебном году на уроках математики мы изучили одну из самых популярных теорем геометрии – теорему Пифагора. Теорема Пифагора применяется в геометрии на каждом шагу, она нашла широкое применение в практике и обыденной жизни. Но, кроме самой теоремы, мы изучили также и теорему, обратную к теореме Пифагора. В связи с изучением уже этой теоремы, у нас состоялось знакомство с пифагоровыми тройками чисел, т.е. с наборами из 3-х натуральных чисел a , b и c , для которых справедливо соотношение: = + . К таким наборам относят, например, следующие тройки:

3,4,5; 5,12,13; 7,24,25; 8,15,17; 20,21,29; 9,40,41; 12,35,37

У меня сразу возникли вопросы: а сколько пифагоровых троек можно придумать? А как их составлять?

В нашем учебнике геометрии после изложения теоремы, обратной теореме Пифагора, было сделано важное замечание: можно доказать, что катеты а и b и гипотенуза с прямоугольных треугольников, длины сторон которых выражаются натуральными числами, можно находить по формулам:

а = 2kmn b = k( - ) c = k( + , (1)

где k , m , n – любые натуральные числа, причем m > n .

Естественно, возникает вопрос – как доказать данные формулы? И только ли по этим формулам можно составлять пифагоровы тройки?

В своей работе я осуществил попытку ответить на возникшие у меня вопросы.

Теоретическая часть работы

Нахождение основного Пифагорова треугольника (формулы древних индусов)

Сначала докажем формулы (1):

Обозначим длины катетов через х и у , а длину гипотенузы через z . По теореме Пифагора имеем равенство: + = .(2)

Данное уравнение называют уравнением Пифагора. Исследование пифагоровых треугольников сводится к решению в натуральных числах уравнения (2).

Если каждую сторону некоторого пифагорова треугольника увеличить в одно и то же число раз, то получим новый прямоугольный треугольник, подобный данному со сторонами, выраженными натуральными числами, т.е. снова пифагоров треугольник.

Среди всех подобных треугольников существует наименьший, легко догадаться, что это будет треугольник, стороны которого х и у выражаются взаимно простыми числами

(НОД ( х,у )=1).

Такой пифагоров треугольник назовем основным .

Отыскание основных пифагоровых треугольников.

Пусть треугольник (x , y , z ) – основной пифагоров треугольник. Числа х и у – взаимно простые, и потому не могут быть оба четными. Докажем, что они не могут быть оба и нечетными. Для этого заметим, что квадрат нечетного числа при делении на 8 дает в остатке 1. В самом деле, любое нечетное натуральное число можно представить в виде 2 k -1 , где k принадлежит N .

Отсюда: = -4 k +1 = 4 k ( k -1)+1.

Числа ( k -1) и k – последовательные, одно из них обязательно четное. Тогда выражение k ( k -1) делится на 2 , 4 k ( k -1) делится на 8, а значит, число при делении на 8 дает в остатке 1.

Сумма квадратов двух нечетных чисел дает при делении на 8 в остатке 2, следовательно, сумма квадратов двух нечетных чисел есть число четное, но не кратное 4, а потому это число не может быть квадратом натурального числа.

Итак, равенство (2) не может иметь места, если x и у оба нечетны.

Таким образом, если пифагоров треугольник (х, у, z ) - основной, то среди чисел х и у одно должно быть четным, а другое – нечетным. Пусть число у является четным. Числа х и z нечетны (нечетность z следует из равенства (2)).

Из уравнения + = получаем, что = ( z + x )( z - x ) (3).

Числа z + x и z - x как сумма и разность двух нечетных чисел – числа четные, а потому (4):

z + x = 2 a , z - x = 2 b , где а и b принадлежат N .

z + x =2 a , z - x = 2 b ,

z = a+b , x = a - b. (5)

Из этих равенств следует, что a и b – взаимно простые числа.

Докажем это, рассуждая от противного.

Пусть НОД ( a , b )= d , где d >1 .

Тогда d z и x , а следовательно, и чисел z + x и z - x . Тогда на основании равенства (3) было бы делителем числа . В таком случае d был бы общим делителем чисел у и х , но числа у и х должны быть взаимно простыми.

Число у , как известно, четное, поэтому у = 2с , где с – натуральное число. Равенство (3) на основании равенства (4) принимает следующий вид: =2а*2 b , или =ab.

Из арифметики известно, что если произведение двух взаимно простых чисел является квадратом натурального числа, то каждое из этих чисел также является квадратом натурального числа.

Значит, а = и b = , где m и n – взаимно простые числа, т.к. они являются делителями взаимно простых чисел а и b .

На основании равенства (5) имеем:

z = + , x = - , = ab = * = ; с = mn

Тогда у = 2 mn .

Числа m и n , т.к. являются взаимно простыми, не могут быть одновременно четными. Но и нечетными одновременно быть не могут, т.к. в этом случае х = - было бы четным, что невозможно. Итак, одно из чисел, m или n четно, а другое нечетно. Очевидно, у = 2 mn делится на 4. Следовательно, в каждом основном пифагоровом треугольнике хотя бы один из катетов делится на 4. Отсюда следует, что нет пифагоровых треугольников, все стороны которого были бы простыми числами.

Полученные результаты можно выразить в виде следующей теоремы:

Все основные треугольники, в которых у является четным числом, получаются из формулы

х = - , y =2 mn , z = + ( m > n ), где m и n – все пары взаимно простых чисел, из которых одно является четным, а другое нечетным (безразлично, какое). Каждая основная пифагорова тройка (х, у, z ), где у – четное,- определяется этим способом однозначно.

Числа m и n не могут быть оба четными или оба нечетными, т.к. в этих случаях

х = были бы четными, что невозможно. Итак, одно из чисел m или n четно, а другое нечетно (y = 2 mn делится на 4).

Практическая часть работы

Составление пифагоровых троек различными способами

В формулах индусов m и n – взаимно простые, но могут быть числами произвольной четности и составлять пифагоровы тройки по ним достаточно тяжело. Поэтому попробуем найти другой подход к составлению пифагоровых троек.

= - = ( z - y )( z + y ), где х – нечетное, y – четное, z – нечетное

v = z - y , u = z + y

= uv , где u – нечетное, v – нечетное (взаимно простые)

Т.к. произведение двух нечетных взаимно простых чисел является квадратом натурального числа, то u = , v = , где k и l – взаимно простые, нечетные числа.

z - y = z + y = k 2 , откуда, складывая равенства и вычитая из одного другое, получаем:

2 z = + 2 y = - то есть

z = y = x = kl

k

l

x

y

z

37

9

1

9

40

41 (s нулей )*(100…0 (s нулей ) +1)+1 =200…0 (s-1 нулей ) 200…0 (s-1 нулей ) 1

Важное свойство пифагоровых треугольников

Теорема

В основном пифагоровом треугольнике один из катетов обязательно делится на 4, один из катетов обязательно делится на 3 и площадь пифагорова треугольника обязательно кратна 6.

Доказательство

Как нам известно, во всяком пифагоровом треугольнике хотя бы один из катетов делится на 4.

Докажем, что один из катетов делится и на 3.

Для доказательства предположим, что в пифагоровом треугольнике (x , y , z x или y кратно 3.

Теперь докажем, что площадь пифагорова треугольника делится на 6.

Всякий пифагоров треугольник имеет площадь, выражаемую натуральным числом, кратным 6. Это следует из того, что хотя бы один из катетов делится на 3 и хотя бы один из катетов делится на 4. Площадь треугольника, определяемая полупроизведением катетов, должна выражаться числом, кратным 6.

Заключение

В работе

- доказаны формулы древних индусов

-проведено исследование на количество пифагоровых троек (их бесконечно много)

-указаны способы нахождения пифагоровых троек

-изучены некоторые свойства пифагоровых треугольников

Для меня это была очень интересная тема и находить ответы на мои вопросы стало очень интересным занятием. В дальнейшем я планирую рассмотреть связь пифагоровых троек с последовательностью Фибоначчи и теоремой Ферма и узнать еще много свойств пифагоровых треугольников.

Литература

    Л.С. Атанасян “Геометрия.7-9 классы” М.: Просвещение, 2012.

    В. Серпинский “Пифагоровы треугольники” М.:Учпедгиз, 1959.

Саратов

2014

Поделитесь с друзьями или сохраните для себя:

Загрузка...