Решение уравнений с двумя переменными. Неопределённые уравнения в натуральных числах Системы рациональных уравнений с параметром

1. Системы линейных уравнений с параметром

Системы линейных уравнений с параметром решаются теми же основными методами, что и обычные системы уравнений: метод подстановки, метод сложения уравнений и графический метод. Знание графической интерпретации линейных систем позволяет легко ответить на вопрос о количестве корней и их существовании.

Пример 1.

Найти все значения для параметра а, при которых система уравнений не имеет решений.

{х + (а 2 – 3)у = а,
{х + у = 2.

Решение.

Рассмотрим несколько способов решения данного задания.

1 способ . Используем свойство: система не имеет решений, если отношение коэффициентов перед х равно отношению коэффициентов перед у, но не равно отношению свободных членов (а/а 1 = b/b 1 ≠ c/c 1). Тогда имеем:

1/1 = (а 2 – 3)/1 ≠ а/2 или систему

{а 2 – 3 = 1,
{а ≠ 2.

Из первого уравнения а 2 = 4, поэтому с учетом условия, что а ≠ 2, получаем ответ.

Ответ: а = -2.

2 способ . Решаем методом подстановки.

{2 – у + (а 2 – 3)у = а,
{х = 2 – у,

{(а 2 – 3)у – у = а – 2,
{х = 2 – у.

После вынесения в первом уравнении общего множителя у за скобки, получим:

{(а 2 – 4)у = а – 2,
{х = 2 – у.

Система не имеет решений, если первое уравнение не будет иметь решений, то есть

{а 2 – 4 = 0,
{а – 2 ≠ 0.

Очевидно, что а = ±2, но с учетом второго условия в ответ идет только ответ с минусом.

Ответ: а = -2.

Пример 2.

Найти все значения для параметра а, при которых система уравнений имеет бесконечное множество решений.

{8х + ау = 2,
{ах + 2у = 1.

Решение.

По свойству, если отношение коэффициентов при х и у одинаковое, и равно отношению свободных членов системы, то она имеет бесконечное множество решений (т. е. а/а 1 = b/b 1 = c/c 1). Следовательно 8/а = а/2 = 2/1. Решая каждое из полученных уравнений находим, что а = 4 – ответ в данном примере.

Ответ: а = 4.

2. Системы рациональных уравнений с параметром

Пример 3.

{3|х| + у = 2,
{|х| + 2у = a.

Решение.

Умножим первое уравнение системы на 2:

{6|х| + 2у = 4,
{|х| + 2у = a.

Вычтем из первого второе уравнение, получим 5|х| = 4 – а. Это уравнение будет иметь единственное решение при а = 4. В других случаях это уравнение будет иметь два решения (при а < 4) или ни одного (при а > 4).

Ответ: а = 4.

Пример 4.

Найти все значения параметра а, при которых система уравнений имеет единственное решение.

{х + у = а,
{у – х 2 = 1.

Решение.

Данную систему решим с использованием графического метода. Так, графиком второго уравнения системы является парабола, поднятая по оси Оу вверх на один единичный отрезок. Первое уравнение задает множество прямых, параллельных прямой y = -x (рисунок 1) . Из рисунка хорошо видно, что система имеет решение, если прямая у = -х + а является касательной к параболе в точке с координатами (-0,5; 1,25). Подставив в уравнение прямой вместо х и у эти координаты, находим значение параметра а:

1,25 = 0,5 + а;

Ответ: а = 0,75.

Пример 5.

Используя метод подстановки, выясните, при каком значении параметра а, система имеет единственное решение.

{ах – у = а + 1,
{ах + (а + 2)у = 2.

Решение.

Из первого уравнения выразим у и подставим во второе:

{у = ах – а – 1,
{ах + (а + 2)(ах – а – 1) = 2.

Приведем второе уравнение к виду kx = b, которое будет иметь единственное решение при k ≠ 0. Имеем:

ах + а 2 х – а 2 – а + 2ах – 2а – 2 = 2;

а 2 х + 3ах = 2 + а 2 + 3а + 2.

Квадратный трехчлен а 2 + 3а + 2 представим в виде произведения скобок

(а + 2)(а + 1), а слева вынесем х за скобки:

(а 2 + 3а)х = 2 + (а + 2)(а + 1).

Очевидно, что а 2 + 3а не должно быть равным нулю, поэтому,

а 2 + 3а ≠ 0, а(а + 3) ≠ 0, а значит а ≠ 0 и ≠ -3.

Ответ: а ≠ 0; ≠ -3.

Пример 6.

Используя графический метод решения, определите, при каком значении параметра а, система имеет единственное решение.

{х 2 + у 2 = 9,
{у – |х| = а.

Решение.

Исходя из условия, строим окружность с центром в начале координат и радиусом 3 единичных отрезка, именно ее задает первое уравнение системы

х 2 + у 2 = 9. Второе уравнение системы (у = |х| + а) – ломаная. С помощью рисунка 2 рассматриваем все возможные случаи ее расположения относительно окружности. Легко видеть, что а = 3.

Ответ: а = 3.

Остались вопросы? Не знаете, как решать системы уравнений?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Неопределённые уравнения в натуральных числах.

ГУО”Речицкий Районный Лицей”

Подготовил: .

Руководитель: .

Введение

1.Решение уравнений методом разложения на множители…………4

2.Решение уравнений с двумя переменными (дискриминантный метод)…………………………………………………………………….11

3.Метод остатков.................................................................................13

4.Метод «бесконечного спуска».........................................................15

5.Метод проб…………………………………………………………...16

Заключение.........................................................................................18

Введение

Я - Слава учусь в Речицком Районном Лицее, учащийся 10 класса .

Всё начинается с идеи! Мне предложили решить уравнение с тремя неизвестными 29х+30у+31 z =366. Теперь я это уравнение расцениваю как задачу – шутку, а в первый раз поломала голову. Для меня это уравнение стало своего рода неопределенным, как его решать, каким способом.

Под неопределёнными уравнениями мы должны понимаем, что это уравнения, содержащие более одного неизвестного. Обычно, люди, которые решают эти уравнения, ищут решения в целых числах.

Решение неопределённых уравнений – это очень увлекательное и познавательное занятие, способствующее формированию у учащихся сообразительности, наблюдательности, внимательности, так же развитию памяти и ориентации, умению логически мыслить, анализировать, сопоставлять и обобщать. Общей методики я пока не нашла, но об некоторых приёмах решения таких уравнений в натуральных числах сейчас я вам расскажу.

Данная тема недостаточно полно изложена в действующих учебниках математики, а задачи предлагаются на олимпиадах и на централизованном тестировании. Это меня заинтересовало и увлекло настолько, что решая разные уравнения и задачи, у меня собралась целая коллекция собственных решений, которые с учителем мы разбили по методам и способам решения. И так какая же моя цель работы?

Моя цель разобрать решения уравнений с несколькими переменными на множестве натуральных чисел.

Для начала мы рассмотрим практические задачи, а после перейдем к решению уравнений.

Какова длина сторон прямоугольника, если его периметр численно равен площади?

Р=2(х+у),

S = ху, х€ N и у€ N

P = S

2х+2у=ху, font-size:14.0pt;line-height: 150%;font-family:" times new roman>+ font-size:14.0pt;line-height: 150%;font-family:" times new roman>= font-size:14.0pt;line-height:150%;font-family:" times new roman position:relative>font-size:14.0pt;line-height: 150%;font-family:" times new roman> + font-size:14.0pt;line-height: 150%;font-family:" times new roman> = font-size:14.0pt;line-height:150%;font-family:" times new roman>Ответ: (4:4); (3:6); (6:3).

Найти способы уплаты 47 рублей, если для этого можно использовать только трёх и пятирублевые купюры.

Решение

5х+3у=47

х=1, у=14

х=1 – 3К, у= 14+5К, К€ Z

Натуральные значения х и у соответствуют К= 0, -1, -2;

(1:14) (4:9) (7:4)

Задача-шутка

Докажите, что существует решение уравнения 29х+30у+31 z =336 в натуральных числах.

Доказательство

В високосном году 366 дней и один месяц – 29 дней, четыре месяца - 30 дней,

7 месяцев – 31 день.

Решением является тройка (1:4:7). Это означает, что существует решение уравнения в натуральных числах.

1. Решение уравнений методом разложения на множители

1) Решите уравнение х2-у2=91 в натуральных числах

Решение

(х-у)(х+у)=91

Решение 8 систем

font-size:14.0pt; line-height:150%;font-family:" times new roman>х-у=1

х+у=91

(46:45)

font-size:14.0pt; line-height:150%;font-family:" times new roman>х-у=91

х+у=1

(46: -45)

х-у=13

х+у=7

(10: -3)

х-у =7

х+у=13

(10:3)

х-у= -1

х+у= -91

(-46: 45)

х-у = -91

х+у= -1

(-46: -45)

х-у = -13

х+у= -7

(-10:3)

х-у font-size:14.0pt; line-height:150%;font-family:" times new roman>= -7

х+у= -13

(-10: -3)

Ответ: ( 46:45):(10:3).

2) Решите уравнение х3+91 =у3 в натуральных числах

Решение

(у-х)(у2+ху+х2)=91

91=1*91=91*1=13*7=7*13= (-1)*(-91)=(-7)*(-13)

Решение 8 систем

у-х=1

у2+ху+х2=91

(5:6)(-6: -5)

font-size:14.0pt; line-height:150%;font-family:" times new roman>у-х= 91

у2+ху+х2= 1

у-х=13

у2+ху+х2=7

не имеет решений в целых числах

у-х=7

у2+ху+х2=91

(-3: 4)(-4: 3)

Остальные 4 системы не имеют решений в целых числах. Условию удовлетворяет одно решение.

Ответ: (5:6).

3) Решить уравнение ху=х+у в натуральных числах

Решение

ху-х-у+1=1

х(у-1)-(у-1)=1

(у-1)(х-1)=1

1= 1*1=(-1)*(-1)

Решение 2 системы

font-size:14.0pt; line-height:150%;font-family:" times new roman>у-1= -1

х-1= -1

(0:0)

font-size:14.0pt; line-height:150%;font-family:" times new roman>у-1=1

х-1=1

(2:2)

Ответ: (2:2).

4) Решить уравнение 2х2+5ху-12у2=28 в натуральных числах

Решение

2х2-3ху+8ху-12у2=28

(2х-3у)(х+4у)=28

х;у – натуральные числа; (х+4у)€ N

(х+4у)≥5

font-size:14.0pt; line-height:150%;font-family:" times new roman>2х-3у=1

х+4у=28

(8:5)

font-size:14.0pt; line-height:150%;font-family:" times new roman>2х-3у =4

х+4у= 7

2х-3у=2

х+4у=14

нет решений в натуральных числах

Ответ: (8:5).

5) Решить уравнение 2ху= х2+2у в натуральных числах

Решение

х2-2ху+2у=0

(х2-2ху+у2)-у2+2у-1+1=0

(х-у)2-(у-1)2= -1

(х-у-у+1)(х-у+у-1)= -1

(х-2у+1)(х-1)= -1

х-2у+1= -1

х-1= 1

(2:2)

х-2у+1=1

х-1= -1

нет решений в натуральных числах

Ответ: (2:2).

6) Решить уравнение x у z -3 xy -2 xz + yz +6 x -3 y -2 z = -4 в натуральных числах

Решение

ху(z -3)-2 x (z -3)+ y (z -3)-2 z +4=0

ху(z -3)-2 x (z -3)+ y (z -3)-2 z +6-2=0

ху(z -3)-2 x (z -3)+ y (z -3)-2(z -3)=2

(z-3)(xy-2x+y-2)=2

(z-3)(x(y-2)+(y-2))=2

(z-3)(x+1)(y-2)=2

Решение 6 систем

z -3= 1

x +1=1

y -2 = 2

(0 : 4 : 4 )

z-3= -1

x+1=-1

y-2= 2

(- 2: 4 : 2 )

EN-US" style="font-size: 14.0pt;line-height:150%;font-family:" times new roman>z-3= 1

x+1=2

y-2 =1

(1 : 3 : 4 )

z-3=2

x+1=1

y-2=1

(0 :3: 5 )

z-3= -1

x +1 = 2

y -2 = -1

(1:1:2)

z -3=2

x +1= -1

y -2= -1

(-2:1:5)

Ответ: (1:3:4).

Рассмотрим более сложное для меня уравнение.

7) Решить уравнение х2-4ху-5у2=1996 в натуральных числах

Решение

(х2-4ху+4у2)-9у2=1996

(х-2у)2-9у2=1996

(х-5у)(х+5у)=1996

1996=1*1996= -1*(-1996)=2*998= (-2)*(-998)=4*499= -4*(-499)

х€ N , у€ N ; (х+у)€ N ; (х+у)>1

х-5у=1

х+у=1996

нет решений

font-size:14.0pt; line-height:150%;font-family:" times new roman>х-5у=499

х+у= 4

нет решений

font-size:14.0pt; line-height:150%;font-family:" times new roman>х-5у=4

х+у=499

нет решений

х-5у=2

х+у=998

(832:166)

х-5у=988

х+у=2

нет решений

Ответ: х=832, у=166.

Сделаем вывод: при решении уравнений методом разложения на множители применяются формулы сокращенного умножения, способ группировки, метод выделения полного квадрата.

2. Решение уравнений с двумя переменными (дискриминантный метод)

1)Решить уравнение 5х2+5у2+8ху+2у-2х+2=0 в натуральных числах

Решение

5х2+(8у-2)х+5у2+2у+2=0

Д= (8у – 2)2 – 4*5*(5у2+2у+2)= 4((4у – 1)2 –5*(5у2+2у+2))

х1,2= font-size:14.0pt;line-height: 150%;font-family:" times new roman>= font-size:14.0pt;line-height: 150%;font-family:" times new roman>

Д=0, font-size:14.0pt;line-height: 150%;font-family:" times new roman>=0

у=-1, х=1

Ответ: решений нет.

2) Решить уравнение 3(х2+ху+у2)=х+8у в натуральных числах

Решение

3(х2+ху+у2)=х+8у

3х2+3(у-1)х+3у2-8у=0

Д=(3у-1)2-4*3(3у2-8у)=9у2-6у+1-36у2+96у=-27у2+90у+1

Д≥0, -27у2+90у+1≥0

font-size:14.0pt;line-height: 150%;font-family:" times new roman>≤у≤ font-size:14.0pt;line-height:150%;font-family:" times new roman>у€ N , у=1, 2, 3.Перебирая эти значения, имеем (1:1).

Ответ: (1:1).

3)Решите уравнение х4-у4-20х2+28у2=107 в натуральных числах

Решение

Вводим замену: х2=а, у2=а;

а2-а2-20а+28а=107

а2-20а+28а-а2=0

а1,2=-10± +96 font-size:14.0pt;line-height:150%;font-family:" times new roman color:black>а2-20а+28а-а2-96=11

а1,2=10± font-size:14.0pt;line-height: 150%;font-family:" times new roman>= 10± font-size:14.0pt;line-height: 150%;font-family:" times new roman>= 10±(а-14)

а1= а-4, а2=24-а

Уравнение имеет вид:

(а-а+4)(а+а-24)=1

font-size:14.0pt; line-height:150%;font-family:" times new roman>х2-у2+4=1

х2+у2 – 24=11

нет решений в натуральных числах;

х2 - у2+4=11

х2+у2 – 24=1

(4:3),(-4:-3),(-4:3), (4: -3)

font-size:14.0pt; line-height:150%;font-family:" times new roman>х2 - у2+4= -1

х2+у2 – 24= -11

(2:3),(-2: -3),(-2:3),(2: -3)

х2 - у2+4= -11

х2+у2 – 24= -1 нет решений в натуральных и целых числах Ответ: (4:3),(2:3).

3. Метод остатков

При решении уравнений методом остатков очень часто используют задачи:

А) Какие остатки могут давать при делении на 3и 4?

Всё очень просто, при делении на 3 или 4 точные квадраты могут давать два возможных остатка: 0 или 1.

Б) Какие остатки могут давать точные кубы при делении на 7 и 9?

При делении на 7 могут давать остатки: 0, 1, 6; а при делении на 9: 0, 1, 8.

1) Решить уравнение х2+у2=4 z -1 в натуральных числах

Решение

х2+у2+1=4 z

Рассмотрим, какие остатки могут давать при делении на 4 левая и правая части этого уравнения. При делении на 4 точные квадраты могут давать только два различных остатка 0 и 1. Тогда х2+у2+1 при делении на 4 дают остатки 1, 2, 3, а 4 z делится без остатка.

Следовательно, данное уравнение не имеет решений.

2) Решите уравнение 1!+2!+3!+ …+х!= у2в натуральных числах

Решение

a) Х=1, 1!=1, тогда у2=1, у=±1 (1:1)

b) х=3, 1!+2!+3!= 1+2+6= 9, то есть у2= 9, у=±3 (3:3)

c) х=2, 1!+2!= 1+2= 3, у2=3, то есть у=± font-size:14.0pt;line-height:150%; font-family:" times new roman>d) х=4, 1!+2!+3!+4!= 1+2+6+24=33, х=4 (нет), у2=33

e) х≥5, 5!+6!+…+х!, представим 10 n , n € N

1!+2!+3! +5!+…+х!=33+10 n

Число, оканчивающееся цифрой 3, означает, что оно не может быть квадратом целого числа. Следовательно, х≥5, не имеет решений в натуральных числах.

Ответ: (3:3) и (1:1).

3) Доказать, что нет решений в натуральных числах

х2-у3=7

z 2 – 2у2=1

Доказательство

Предположим, что система разрешима z 2 =2у2+1, z 2 – нечётное число

z =2 m +1

y 2 +2 m 2 +2 m , у2 – чётное число, у = 2 n , n € N

х2=8 n 3 +7, то есть х2 – нечётное число и х нечётное, х = 2 r +1, n € N

Подставим х и у в первое уравнение,

2(r 2 + r -2 n 3 )=3

Не возможно, так как левая часть уравнения делится на два, а правая не делится, значит, наше предположение не верно, то есть система не имеет решений в натуральных числах.

4. Метод бесконечного спуска

Решаем по следующей схеме:

Предположим, что уравнение имеет решение, мы строим некий бесконечный процесс, в то время как по самому смыслу задачи этот процесс должен на чётном шаге закончиться.

1)Докажите, что уравнение 8х4+4у4+2 z 4 = t 4 не имеет решений в натуральных числах

Доказательство

Допустим, что уравнение имеет решение в целых числах, тогда следует, что

t 4 – чётное число, тогда t – тоже чётное

t=2t1 , t1€ Z

8х4+4у4+2 z 4 = 16t14

4х4+2у4+ z 4 = 8t14

z 4 =8t14 - 4х4 - 2у4

z 4 – чётное, тогда z =2 z 1 , z 1 € Z

Подставим

4х4+2у4+16 z 4 =8t14

у4= 4t14 – 2х4 - 8 z 1 4

х – чётное, то есть х=2х, х1€ Z , тогда

16х14 – 2 t 1 4 – 4 z 1 4 +8 y 1 4 =0

8х14+4у14+2 z 1 4 = t 1 4

И так х, у, z , t чётные числа, тогда х1, у1, z 1 , t 1 – чётные. Тогда х, у, z , t и х1, у1, z 1 , t 1 делятся на 2, то есть , font-size:14.0pt;line-height:150%;font-family:" times new roman position:relative>font-size:14.0pt;line-height: 150%;font-family:" times new roman>, font-size:14.0pt;line-height: 150%;font-family:" times new roman>, font-size:14.0pt;line-height: 150%;font-family:" times new roman> и font-size:14.0pt;line-height: 150%;font-family:" times new roman>, font-size:14.0pt;line-height: 150%;font-family:" times new roman>, font-size:14.0pt;line-height: 150%;font-family:" times new roman>, font-size:14.0pt;line-height: 150%;font-family:" times new roman>.

Итак, оказалось, что число, удовлетворяет уравнение; кратны 2, и сколько раз мы не делили бы их на 2, всегда будем получать числа, кратные 2. Единственное число, удовлетворяет этому условию – нуль. Но нуль не принадлежит множеству натуральных чисел.

5. Метод проб

1) Найти решения уравнения font-size:14.0pt;line-height: 150%;font-family:" times new roman>+ font-size:14.0pt;line-height: 150%;font-family:" times new roman>= font-size:14.0pt;line-height:150%;font-family:" times new roman>Решение

font-size:14.0pt;line-height: 150%;font-family:" times new roman>= font-size:14.0pt;line-height:150%;font-family:" times new roman>р(х+у)=ху

ху=рх+ру

ху-рх-ру=0

ху-рх-ру+р2=р2

х(у-р)-р(у-р)=р2

(у-р)(х-р)=р2

р2= ±р= ±1= ±р2

Решение 6 систем

font-size:14.0pt; line-height:150%;font-family:" times new roman>у-р= р

х-р= р

у=2р, х=2р

у-р= - р

х-р= - р

у=0, х=0

у-р=1

х-р=1

у=1+р, х=1+р

у-р= -1

х-р= -1

у=р-1, х=р-1

font-size:14.0pt; line-height:150%;font-family:" times new roman>у-р= р2

х-р= р2

у=р2+р, х= р2+р

font-size:14.0pt; line-height:150%;font-family:" times new roman>у-р= - р2

х-р= - р2

у=р-р2, х=р-р2

Ответ: (2р:2р), (1+р:1+р), (р-1:р-1), (р2+р:р2+р), (р-р2:р-р2).

Заключение

Обычно решения неопределённых уравнений ищут в целых числах. Уравнения, в которых ищут только целочисленные решения, называют диафантовыми.

Я разобрал решения уравнений с числом неизвестных больше одного, на множестве натуральных чисел. Такие уравнения настолько разнообразны, что вряд ли существует какой-либо способ, алгоритм их решения. Решение таких уравнений требует изобретательность и способствует приобретению навыков самостоятельной работы в математики.

Я решал примеры простейшими приёмами. Простейшим приём решений таких уравнений в том, чтобы выразить одну переменную через остальные, и получится выражение, которое мы будем исследовать, с целью нахождения этих переменных, при которых оно является натуральным (целым).

При этом, используется понятия и факты, связанные делимостью, - такие, как простые и составные числа, признаки делимости, взаимно простые числа и др.

Особенно часто применяются:

1) Если произведение делится на простое число р, то хотя бы один из его сомножителей делится на р.

2) Если произведение делится на некоторое число с и один из сомножителей взаимно простое с числом с , то второй множитель делится на с .

Инструкция

Способ подстановкиВыразите одну переменную и подставте ее в другое уравнение. Выражать можно любую переменную по вашему усмотрению. Например, выразите «у из второго уравнения:
х-у=2 => у=х-2Затем подставьте все в первое уравнение:
2х+(х-2)=10Перенесите все без «х в правую часть и подсчитайте:
2х+х=10+2
3х=12 Далее, чтобы «х, разделите обе части уравнения на 3:
х=4.Итак, вы нашли «х. Найдите «у. Для этого подставьте «х в то уравнение, из которого вы выразили «у:
у=х-2=4-2=2
у=2.

Сделайте проверку. Для этого подставьте получившиеся значения в уравнения:
2*4+2=10
4-2=2
Неизвестные найдены верно!

Способ сложения или вычитания уравненийИзбавьтесь сразу от -нибудь перемененной. В нашем случае это проще сделать с «у.
Так как в уравнении «у со знаком «+ , а во втором «- , то вы можете выполнить операцию сложения, т.е. левую часть складываем с левой, а правую с правой:
2х+у+(х-у)=10+2Преобразуйте:
2х+у+х-у=10+2
3х=12
х=4Подставьте «х в любое уравнение и найдите «у:
2*4+у=10
8+у=10
у=10-8
у=2По 1-ому способу можете проверить, что корни найдены верно.

Если нет четко выраженных переменных, то необходимо немного преобразовать уравнения.
В первом уравнении имеем «2х, а во втором просто «х. Для того, чтобы при сложении или вычитании «х сократился, второе уравнение умножьте на 2:
х-у=2
2х-2у=4Затем вычтите из первого уравнения второе:
2х+у-(2х-2у)=10-4Заметим, если перед скобкой стоит минус, то после раскрытия поменяйте знаки на противоположные:
2х+у-2х+2у=6
3у=6
у=2«х найдите, выразив из любого уравнения, т.е.
х=4

Видео по теме

При решении дифференциальных уравнений не всегда явно доступен аргумент x (или время t в задачах физических). Тем не менее – это упрощенный частный случай задания дифференциального уравнения, что часто способствует упрощению поиска его интеграла.

Инструкция

Рассмотрите физическую задачу, приводящую к дифференциальному уравнению, в котором отсутствует аргумент t. Это задача о колебаниях массой m, подвешенного на нити длиной r, расположенной в вертикальной плоскости. Требуется уравнение движения маятника, если в начальный был неподвижен и отклонен от состояния равновесия на угол α. Силами следует пренебречь (см. рис. 1a).

Решение. Математический маятник представляет собой материальную точку, подвешенную на невесомой и нерастяжимой нити в точке О. На точку действуют две силы: сила тяжести G=mg и сила натяжения нити N. Обе эти силы лежат в вертикальной плоскости. Поэтому для решения задачи можно применить уравнение вращательного движения точки вокруг горизонтальной оси, проходящей через точку О. Уравнение вращательного движения тела имеет вид, приведенный на рис. 1b. При этом I - момент инерции материальной точки; j - угол поворота нити вместе с точкой, отсчитываемый от вертикальной оси против часовой стрелки; M - момент сил, приложенных к материальной точке.

Вычислите эти величины. I=mr^2, M=M(G)+M(N). Но M(N)=0, так как линия действия силы проходит через точку О. M(G)=-mgrsinj. Знак «-» обозначает, что момент силы направлен в сторону противоположную движению. Подставьте момент инерции и момент силы в уравнение движения и получите уравнение, отображенное на рис. 1с. Сокращая массу, возникает соотношение (см. рис. 1d). Здесь нет аргумента t.

Решение уравнений в целых числах является одной из древнейших математических задач. Уже в начале 2 тысячелетия до н. э. Вавилоняне умели решать системы таких уравнений с двумя переменными. Наибольшего расцвета эта область математики достигла в Древней Греции. Основным источником для нас является «Арифметика» Диофанта, содержащая различные типы уравнений. В ней Диофант (по его имени и название уравнений – диофантовы уравнения) предвосхищает ряд методов исследования уравнений 2-ой и 3-ой степеней, развившихся только в 19 веке.

Простейшие диофантовы уравнения ах + ву = 1(уравнение с двумя переменными, первой степени) х2 + у2 = z2 (уравнение с тремя переменными, второй степени)

Наиболее полно изучены алгебраические уравнения, их решение было одной из важнейших задач алгебры в 16-17 вв.

К началу 19 века трудами П. Ферма, Л. Эйлера, К. Гаусса было исследовано диофантово уравнение вида: ах2 + вху + су2 + dx + ey + f = 0, где a, в, с, d, e, f числа; х, у неизвестные переменные.

Это уравнение 2-ой степени с двумя неизвестными.

К. Гаусс построил общую теорию квадратичных форм, являющуюся основой решения некоторых типов уравнений с двумя переменными (диофантовых уравнений). Существует большое число конкретных диофантовых уравнений, решаемых элементарными способами. /p>

Теоретический материал.

В этой части работы будут описаны основные математические понятия, даны определения терминов, сформулирована теорема о разложении с использованием метода неопределенных коэффициентов, которые были изучены и рассмотрены при решении уравнений с двумя переменными.

Определение 1: Уравнение вида ах2 + вху + су2 + dx + ey + f = 0, где a, в, с, d, e, f числа; х, у неизвестные переменные называется уравнением второй степени с двумя переменными.

В школьном курсе математики изучается квадратное уравнение ах2+вх +с=0 , где а,в,с числа х переменная, с одной переменной. Существует много способов решения такого уравнения:

1. Нахождение корней, используя дискриминант;

2. Нахождение корней для четного коэффициента в (по Д1=);

3. Нахождение корней по теореме Виета;

4. Нахождение корней с помощью выделения полного квадрата двучлена.

Решить уравнение – значит, найти все его корни или доказать, что их нет.

Определение 2: Корень уравнения – это число, которое при подстановке в уравнение образует верное равенство.

Определение 3: Решение уравнения с двумя переменными называется пара чисел (х,у) при подстановки которых в уравнение, оно превращается в верное равенство.

Процесс разыскивания решений уравнения очень часто заключается обычно в замене уравнения равносильным уравнением, но более простым при решении. Такие уравнения называются равносильными.

Определение 4: Два уравнения называются равносильными, если каждое решение одного уравнения является решением другого уравнения, и наоборот, причем оба уравнения рассматриваются в одной и той же области.

Для решения уравнений с двумя переменными используют теорему о разложении уравнения на сумму полных квадратов (методом неопределенных коэффициентов).

Для уравнения второго порядка ах2 + вху + су2 + dx + ey + f = 0 (1) имеет место разложение а(х +ру +q)2 + r(y+s)2 +h (2)

Сформулируем условия, при которых имеет место разложение (2) для уравнения (1) двух переменных.

Теорема: Если коэффициенты а,в,с уравнения (1) удовлетворяют условиям а0 и 4ав – с20, то разложение (2) определяется единственным способом.

Другими словами уравнение (1) с двумя переменными можно с помощью метода неопределенных коэффициентов привести к виду (2), если выполнены условия теоремы.

Рассмотрим на примере, как реализуется метод неопределенных коэффициентов.

СПОСОБ №1. Решить уравнение методом неопределенных коэффициентов

2 х2 + у2 + 2ху + 2х +1= 0.

1. Проверим выполнение условия теоремы, а=2, в=1, с=2, значит, а=2,4ав – с2= 4∙2∙1- 22= 40.

2. Условия теоремы выполнены, можно разложить по формуле (2).

3. 2 х2 + у2 + 2ху + 2х +1= 2(х + py + q)2 + r(y +s)2 +h, исходя из условий теоремы обе части тождества равносильны. Упростим правую часть тождества.

4. 2(х + py + q)2 + r(y +s)2 +h =

2(х2+ p2y2 + q2 + 2pxy + 2pqy + 2qx) + r(y2 + 2sy + s2) + h =

2х2+ 2p2y2 + 2q2 + 4pxy + 4pqy + 4qx + ry2 + 2rsy + rs2 + h =

X2(2) + y2(2p2 + r) + xy(4p) + x(4q) + y(4pq + 2rs) + (2q2 + rs2 + h).

5. Приравниваем коэффициенты при одинаковых переменных с их степенями.

х2 2 = 2 у21 = 2p2 + r) ху2 = 4p х2 = 4q у0 = 4pq + 2rs х01 = 2q2 + rs2 + h

6. Получим систему уравнений, решим ее и найдем значения коэффициентов.

7. Подставим коэффициенты в (2), тогда уравнение примет вид

2 х2 + у2 + 2ху + 2х +1= 2(х + 0,5y + 0,5)2 + 0,5(y -1)2 +0

Таким образом, исходное уравнение равносильно уравнению

2(х + 0,5y + 0,5)2 + 0,5(y -1)2 = 0 (3), это уравнение равносильно системе двух линейных уравнений.

Ответ: (-1; 1).

Если обратить внимание на вид разложения (3), то можно заметить, что оно по форме идентично выделению полного квадрата из квадратного уравнения с одной переменной: ах2 + вх + с = а(х +)2 +.

Применим этот прием при решении уравнения с двумя переменными. Решим с помощью выделения полного квадрата уже решенное с использованием теоремы квадратное уравнение с двумя переменными.

СПОСОБ №2: Решить уравнение 2 х2 + у2 + 2ху + 2х +1= 0.

Решение: 1. Представим 2х2 в виде суммы двух слагаемых х2 + х2 + у2 + 2ху + 2х +1= 0.

2. Сгруппируем слагаемые таким образом, чтобы можно было свернуть по формуле полного квадрата.

(х2 + у2 + 2ху) + (х2 + 2х +1)= 0.

3. Выделим полные квадраты из выражений в скобках.

(х + у)2 + (х + 1)2 = 0.

4. Данное уравнение равносильно системе линейных уравнений.

Ответ: (-1;1).

Если сравнить результаты, то видно, что уравнение, решенное способом №1 с использованием теоремы и методом неопределенных коэффициентов и уравнение, решенное способом №2, с помощью выделения полного квадрата имеют одинаковые корни.

Вывод: Квадратное уравнение с двумя переменными можно разлагать на сумму квадратов двумя способами:

➢ Первый способ – это метод неопределенных коэффициентов, в основе которого лежит теорема и разложение (2).

➢ Второй способ – с помощью тождественных преобразований, позволяющих выделить последовательно полные квадраты.

Конечно же, при решении задач второй способ является предпочтительнее, т. к. не требует запоминания разложения (2) и условия.

Этот метод можно применять и для квадратных уравнений с тремя переменными. Выделение полного квадрата в таких уравнениях более трудоемко. Такого вида преобразованиями я буду заниматься в следующем году.

Интересно заметить, что функцию, имеющую вид: f(х,у)= ах2 + вху + су2 + dx + ey + f, называют квадратичной функцией двух переменных. Квадратичным функциям принадлежит важная роль в различных разделах математики:

В математическом программировании (квадратичное программирование)

В линейной алгебре и геометрии (квадратичные формы)

В теории дифференциальных уравнений (приведение линейного уравнения второго порядка к каноническому виду).

При решении этих различных задач, приходится, по сути, применять процедуру выделения полного квадрата из квадратного уравнения (одной, двух и более переменных).

Линии, уравнения которых, описываются квадратным уравнением двух переменных, называются кривыми второго порядка.

Это окружность, эллипс, гипербола.

При построении графиков этих кривых так же используется метод последовательного выделения полного квадрата.

Рассмотрим, как работает метод последовательного выделения полного квадрата на конкретных примерах.

Практическая часть.

Решить уравнения, методом последовательного выделения полного квадрата.

1. 2х2 + у2 + 2ху + 2х + 1 = 0; х2 + х2 + у2 + 2ху + 2х + 1 = 0;

(х +1)2 + (х + у)2 = 0;

Ответ:(-1;1).

2. х2 + 5у2 + 2ху + 4у + 1 = 0; х2 + 4у2 + у2 + 2ху + 4у + 1 = 0;

(х + у)2 + (2у + 1)2 = 0;

Ответ:(0,5; - 0,5).

3. 3х2 + 4у2 - 6ху - 2у + 1 = 0;

3х2 + 3у2 + у2 – 6ху – 2у +1 = 0;

3х2 +3у2 – 6ху + у2 –2у +1 = 0;

3(х2 - 2ху +у2) + у2 - 2у + 1 = 0;

3(х2 - 2ху + у2)+(у2 - 2у + 1)=0;

3(х-у)2 + (у-1)2 = 0;

Ответ:(-1;1).

Решить уравнения:

1. 2х2 + 3у2 – 4ху + 6у +9 =0

(привести к виду: 2(х-у)2 + (у +3)2 = 0)

Ответ: (-3; -3)

2. – 3х2 – 2у2 – 6ху –2у + 1=0

(привести к виду: -3(х+у)2 + (у –1)2= 0)

Ответ: (-1; 1)

3. х2 + 3у2+2ху + 28у +98 =0

(привести к виду: (х+у)2 +2(у+7)2 =0)

Ответ: (7; -7)

Заключение.

В данной научной работе были изучены уравнения с двумя переменными второй степени, рассмотрены способы их решения. Поставленная задача выполнена, сформулирован и описан более краткий способ решения, основанный на выделении полного квадрата и замене уравнения на равносильную систему уравнений, в результате упрощена процедура нахождения корней уравнения с двумя переменными.

Важным моментом работы является то, что рассматриваемый прием применяется при решении различных математических задач связанных с квадратичной функцией, построением кривых второго порядка, нахождением наибольшего (наименьшего) значения выражений.

Таким образом, прием разложения уравнения второго порядка с двумя переменными на сумму квадратов имеет самые многочисленные применения в математике.

Поделитесь с друзьями или сохраните для себя:

Загрузка...